题解 P3941 入阵曲
题解
观察数据范围,可以 \(\mathcal O(n^2m^2)\) 暴力计算,而加上特殊性质,则可以骗到 \(75pts\)
正解:
我们发现,在一维情况下,\(\mod k\) 相同的前缀和相减,一定是 \(k\) 的倍数。那么我们就可以统计一个不同 \(\mod k\) 的值出现了几次,\(\mathcal O(n)\) 求解。
扩展到二维,做法是将一段连续的行合并成一行,ppt 上叫压行。再按一行的做法做,复杂度 \(\mathcal O(n^2m)\)
注意:记得开 long long,同时记录余数的数组清空时不要用 \(memset\)
Code:
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x*=f;
}
}
using IO::read;
namespace nanfeng{
#define cmax(x,y) ((x)>(y)?(x):(y))
#define cmin(x,y) ((x)>(y)?(y):(x))
#define FI FILE *IN
#define FO FILE *OUT
typedef long long ll;
static const int N=405,K=1e6+7;
int cnt[K],b[N],sum[N][N],n,m,k;
ll ans;
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
read(n),read(m),read(k);
for (ri i(1);i<=n;p(i)) {
for (ri j(1),w;j<=m;p(j))
read(w),sum[i][j]=(sum[i-1][j]+sum[i][j-1]+w+k-sum[i-1][j-1])%k;
}
for (ri i(0);i<n;p(i)) {
for (ri j(i+1);j<=n;p(j)) {
cnt[0]=1;
for (ri l(1);l<=m;p(l)) ans+=cnt[b[l]=(sum[j][l]+k-sum[i][l])%k]++;
for (ri l(1);l<=m;p(l)) cnt[b[l]]=0;
}
}
printf("%lld\n",ans);
return 0;
}
}
int main() {return nanfeng::main();}
题解 P3941 入阵曲的更多相关文章
- [luogu]P3941 入阵曲[前缀和][压行]
[luogu]P3941 入阵曲 题目描述 小 F 很喜欢数学,但是到了高中以后数学总是考不好. 有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识算法竞赛的 时候,觉得整个世界都焕然 ...
- P3941 入阵曲
\(\color{#0066ff}{ 题目描述 }\) 小 F 很喜欢数学,但是到了高中以后数学总是考不好. 有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识算法竞赛的 时候,觉得整 ...
- [洛谷P3941] 入阵曲
题目背景 丹青千秋酿,一醉解愁肠. 无悔少年枉,只愿壮志狂. 入阵曲 题解在代码里. #include<iostream> #include<cstdio> #include& ...
- 落谷P3941 入阵曲
题目背景 pdf题面和大样例链接:http://pan.baidu.com/s/1cawM7c 密码:xgxv 丹青千秋酿,一醉解愁肠. 无悔少年枉,只愿壮志狂. 题目描述 小 F 很喜欢数学,但是到 ...
- [洛谷P3941]:入阵曲(前缀和+桶)
题目传送门 题目背景 丹青千秋酿,一醉解愁肠.无悔少年枉,只愿壮志狂. 题目描述 小$F$很喜欢数学,但是到了高中以后数学总是考不好.有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识 ...
- 【题解】入阵曲 luogu3941 前缀和 压维
丹青千秋酿,一醉解愁肠. 无悔少年枉,只愿壮志狂 题目 题目描述 小 F 很喜欢数学,但是到了高中以后数学总是考不好. 有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识算法竞赛的 时 ...
- 洛谷P3941入阵曲
题目传送门 这道题也是今年湖南集训队Day8的第一题,昨天洛谷的公开赛上又考了一遍,来发个记录(其实是因为五月天,另外两道题分别是将军令和星空,出这次题目的人肯定同为五迷(✪㉨✪)) 话不多说.先理解 ...
- Luogu P3941 入阵曲【前缀和】By cellur925
题目传送门 题目大意:给你一个\(n\)*\(m\)的矩阵,每个位置都有一个数,求有多少不同的子矩阵使得矩阵内所有数的和是\(k\)的倍数. 数据范围给的非常友好233,期望得到的暴力分:75分.前1 ...
- luogu P3941 入阵曲
嘟嘟嘟 这道题我觉得跟最大子矩阵那道题非常像,都是O(n4)二维前缀和暴力很好想,O(n3)正解需要点转化. O(n4)暴力就不说啦,二维前缀和,枚举所有矩形,应该能得55分. O(n3)需要用到降维 ...
随机推荐
- jenkins报错The goal you specified requires a project to execute but there is no POM inthis directory
报错截图及详细: 15:30:29[ERROR]The goal you specified requires a project to execute but there is no POM i ...
- WPF教程三:学习Data Binding把思想由事件驱动转变为数据驱动
之前大家写代码都喜欢用事件驱动,比如说鼠标输入的click事件.初始化的内容全部放在窗体加载完毕的load事件,等等,里面包含了大量的由事件触发后的业务处理代码.导致了UI和业务逻辑高度耦合在一个地方 ...
- GitHub 多人协作开发 三种方式(转)
一.Fork 方式 网上介绍比较多的方式(比较大型的开源项目,比如cocos2d-x) 开发者 fork 自己生成一个独立的分支,跟主分支完全独立,pull代码后,项目维护者可根据代码质量决定是否me ...
- QT从入门到入土(二)——对象模型(对象树)和窗口坐标体系
摘要 我们使用的标准 C++,其设计的对象模型虽然已经提供了非常高效的 RTTI 支持,但是在某些方面还是不够灵活.比如在 GUI 编程方面,既需要高效的运行效率也需要强大的灵活性,诸如删除某窗口时可 ...
- HCNA Routing&Switching之动态路由协议OSPF基础(一)
前文我们了解了基于路径矢量算法的动态路由协议RIP防环以及度量值的修改相关话题,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/15012895.html:今天我 ...
- python mysql 图片保存到表,从表中读出图片
fp = open(aa, 'rb') try: img = fp.read() except: print("图片打开出错") fp.close() return img #上面 ...
- File类与常用IO流第一章File类
第一章:File类 一.1个重点单词: file:文件:directory:文件夹/目录:path:路径(绝对路径:absolutePath) 二.4个静态成员变量: 1.static String ...
- SpringBoot总结之属性配置
一.SpringBoot简介 SpringBoot是spring团队提供的全新框架,主要目的是抛弃传统Spring应用繁琐的配置,该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配 ...
- 【Mysql】InnoDB 引擎中的页目录
一.页目录和槽 接上一篇,现在知道记录在页中按照主键大小顺序串成了单链表. 那么我使用主键查询的时候,最顺其自然的办法肯定是从第一条记录,也就是 Infrimum 记录开始,一直向后找,只要存在总会找 ...
- springboot-5-持久层技术
整合mybatis 流程: 导入依赖: 除了mybaits还有mysql和jdbc依赖 <!--mybatis--> <dependency> <groupId>o ...