正题

题目链接:https://www.ybtoj.com.cn/contest/113/problem/2


题目大意

一个空序列,每次往末尾加入一个\([1,m]\)中的随机一个数。如果末尾两个数相同都为\(x\)且\((x<t)\),那么将它们合并成\(x+1\)。

如果序列长度为\(n\)且无法合并则结束,求序列期望和。

\(n,m\in[1,10^3],t\in[1,10^9]\)


解题思路

首先显然地\(t=min\{n+m-1,t\}\)。

之后考虑序列中的每一个位置可能的数,因为每种情况都有可能,所以我们需要算概率先,设\(p_{i,j}\)表示剩余\(i\)个位置时出现\(j\)的概率,那么有\(p_{i,j}=\frac1m\times [j\leq m]+p_{i,j-1}^2\)(直接出现或者合并出来)。

设\(p_{i,j}\times q_{i,j}\)表示剩下\(i\)个位置且第一个最终是\(j\)的概率,那么有\(q_{i,j}=1-p_{i-1,j}\times [j<t]\)(\(q_{i,j}\)就表示在出现了\(j\)的前提下不变的概率,减去会变的概率就好了)。

但是因为每个位置的概率不是独立的,所以不能直接用这个来算答案。

设\(p_{i,j}\times g_{i,j}\)表示在剩下\(i\)个位置且第一个最终是\(j\)时和的期望和(注意期望=概率*次数),\(p_{i,j}\times f_{i,j}\)表示剩下\(i\)个位置时第一个出现过\(j\)的情况的期望和,\(ans_i\)表示剩下\(i\)个位置时的期望和。

那么有

\[ans_i=\sum_{j=1}^{t}p_{i,j}\times g_{i,j}
\]

考虑\(g\)的递推式有

\[g_{i,j}=q_{i,j}\times j+ans_{i-1}-p_{i-1,j}\times f_{i-1,j}
\]

(有\(q_{i,j}\)的概率最终是\(j\),填完剩下的,且下一个不能出现\(j\))

考虑\(f\)的递推式有

\[f_{i,j}=g_{i,j}+(1-q_{i,j})f_{i,j+1}
\]

(第一种是最终不变,第二种是变成了\(j+1\)的情况)

这样就可以递推了,时间复杂度\(O(n^2)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=2100,P=1e9+7;
ll n,m,t,p[N][N],q[N][N],g[N][N],f[N][N],ans[N];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
signed main()
{
freopen("sequence.in","r",stdin);
freopen("sequence.out","w",stdout);
scanf("%lld%lld%lld",&n,&m,&t);
ll inv=power(m,P-2);
t=min(t,n+m-1);
for(ll i=1;i<=n;i++)
for(ll j=1;j<=t;j++){
p[i][j]=(inv*(j<=m)+p[i-1][j-1]*p[i][j-1]%P)%P;
q[i][j]=(1-(j<t)*p[i-1][j]+P)%P;
}
for(ll i=1;i<=n;i++){
for(ll j=t;j>=1;j--){
if(j!=t)
g[i][j]=(q[i][j]*j%P+ans[i-1]-f[i-1][j]*p[i-1][j]%P+P)%P;
else
g[i][j]=(q[i][j]*j%P+ans[i-1])%P;
f[i][j]=(g[i][j]%P+(1-q[i][j])*f[i][j+1]%P)%P;
(ans[i]+=g[i][j]*p[i][j])%=P;
}
}
printf("%lld\n",ans[n]);
return 0;
}

Ybt#452-序列合并【期望dp】的更多相关文章

  1. loj6171/bzoj4899 记忆的轮廊(期望dp+优化)

    题目: https://loj.ac/problem/6171 分析: 设dp[i][j]表示从第i个点出发(正确节点),还可以有j个存档点(在i点使用一个存档机会),走到终点n的期望步数 那么 a[ ...

  2. 概率期望dp

    对于概率dp,我一直都弄得不是特别明白,虽然以前也有为了考试去突击过,但是终究还是掌握得不是很好,所以决定再去学习一遍,把重要的东西记录下来. 1.hdu4405 Description 在一个 \( ...

  3. 【BZOJ】4318: OSU! 期望DP

    [题意]有一个长度为n的01序列,每一段极大的连续1的价值是L^3(长度L).现在给定n个实数表示该位为1的概率,求期望总价值.n<=10^5. [算法]期望DP [题解]后缀长度是一个很关键的 ...

  4. 【poj2096】Collecting Bugs 期望dp

    题目描述 Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other materia ...

  5. hdu4418 Time travel 【期望dp + 高斯消元】

    题目链接 BZOJ4418 题解 题意:从一个序列上某一点开始沿一个方向走,走到头返回,每次走的步长各有概率,问走到一点的期望步数,或者无解 我们先将序列倍长形成循环序列,\(n = (N - 1) ...

  6. 【期望dp 质因数分解】cf1139D. Steps to One

    有一种组合方向的考虑有没有dalao肯高抬啊? 题目大意 有一个初始为空的数组$a$,按照以下的流程进行操作: 在$1\cdots m$中等概率选出一个数$x$并添加到$a$的末尾 如果$a$中所有元 ...

  7. Codeforces 1139D(期望dp)

    题意是模拟一个循环,一开始有一个空序列,之后每次循环: 1.从1到m中随机选出一个数字添加进去,每个数字被选的概率相同. 2.检查这个序列的gcd是否为1,如果为1则停止,若否则重复1操作直至gcd为 ...

  8. 概率及期望DP小结

    资源分享 26 个比较概率大小的问题 数论小白都能看懂的数学期望讲解 概念 \(PS\):不需要知道太多概念,能拿来用就行了. 定义 样本(\(\omega\)):一次随机试验产生的一个结果. 样本空 ...

  9. Gym - 101190F Foreign Postcards (期望dp)

    题意:有n张标有“C”或“F”的卡片. 1.随机取前k张(1<=k<=n) 2.若这k张的第一张为“C”,则不翻转,否则,全部翻转这k张. 3.然后处理剩下的n-k张 4.重复步骤1~3直 ...

  10. 【算法学习笔记】概率与期望DP

    本文学习自 Sengxian 学长的博客 之前也在CF上写了一些概率DP的题并做过总结 建议阅读完本文再去接着阅读这篇文章:Here 前言 单纯只用到概率的题并不是很多,从现有的 OI/ACM 比赛中 ...

随机推荐

  1. centos7上安装redis6-0-5

    下载tar包 wget http://download.redis.io/releases/redis-6.0.5.tar.gz 解压tar包 tar -zxvf redis-6.0.5.tar.gz ...

  2. WPF - 简单的UI框架 - 仪表盘

    源码链接:https://github.com/DuelWithSelf/WPFEffects 参考:https://www.cnblogs.com/duel/p/duel_clock.html 更新 ...

  3. spring加载Bean的解析过程(二)

    1.例如: BeanFactory bf = new XmlBeanFactory(new ClassPathResource("spring.xml")); User user ...

  4. -e $request_filename + nginx内置变量

    -e表示只要filename存在,则为真,不管filename是什么类型,当然这里加了!就取反额外的一些-e filename 如果 filename存在,则为真-d filename 如果 file ...

  5. openstack新建实例各种报错解决

    最近自己装了下Openstack,零基础安装,参照了网上不少教程. 吃了百家饭的后果,就是出现了一堆不明问题...openstack安装比较复杂,很多配置文件,一个地方配置不正确,可能会导致后面的功能 ...

  6. 图解最长回文子串「Manacher 算法」,基础思路感性上的解析

    问题描述: 给你一个字符串 s,找到 s 中最长的回文子串. 链接:https://leetcode-cn.com/problems/longest-palindromic-substring 「Ma ...

  7. Django使用富文本编辑器ckediter

    1 - 安装 pip install django-ckeditor 2 - 注册APP ckeditor 3 - 由于djang-ckeditor在ckeditor-init.js文件中使用了JQu ...

  8. Identity用户管理入门四(修改、删除用户)

    修改用户不能修改Id及用户名所以创建视图模型时需要去除,新增用户跟修改用户基本视图一直,所以不再做演示 一.新建UpdateUserViewModel视图模型 using System.Compone ...

  9. JS003. 事件监听和监听滚动条的三种参数( addEventListener( ) )

    全局 1 window.addEventListener('scroll', () => { 2 console.log('------') 3 console.log(document.doc ...

  10. vue-admin-element 页面跳转

    1.通过router-link 进行跳转 <router-link to="/china-quotation/business-function/quotation-request&q ...