链接:

P5665


题意:

给出 \(n\) 个整数 \(a_i\) ,你需要找到一些分界点 \(1 \leq k_1 \lt k_2 \lt \cdots \lt k_p \lt n\),使得

\(\sum\limits_{i=1}^{k_1} a_i \leq \sum\limits_{i=k_1+1}^{k_2} a_i \leq \cdots \leq \sum\limits_{i=k_p+1}^{n} a_i\)。

注意 \(p\) 可以为 \(0\) 且此时 \(k_0 = 0\)。

请你最小化

\((\sum\limits_{i=1}^{k_1} a_i)^2 + (\sum\limits_{i=k_1+1}^{k_2} a_i)^2 + \cdots + (\sum\limits_{i=k_p+1}^{n} a_i)^2\)。


分析:

根据完全平方公式有:\((a+b)^2\geq a^2+b^2\)

所以分段比不分段更优。其次,对于一个数 \(x\),将他分到左边和右边会造成 \(2x*sum_{side}+x^2\) 的贡献(\(sum\) 指两区间和),又因为 \(sum_L\leq sum_R\) 所以尽量分到左边更优。也就是说,最后一段和最小时,答案最优。(这个策略还是能猜出来,只是不敢确定)。于是就有后面的\(O(n^2)\) dp 了。


算法:

首先维护一个前缀和 \(sum\) (和上文 \(sum\) 不同)。设 \(d[i]\) 为 \(i\) 结尾,最后一段最小时上一段的结尾位置,于是有 \(d[i]=max\{j|sum[i]-sum[j]\geq sum[j]-sum[d[j]]\}\)。从 \(i\) 向左循环遇到的第一个满足条件的位置就是 \(d[i]\)。输出时从 \(n\) 不停向它的 \(d\) 值跳,一直跳到 \(0\)。复杂度 \(O(n^2)\)。


优化:

根据上述算法可以写出这样的程序:

for(int i=1;i<=n;i++){
for(int j=i-1;j>=1;j--)
if(sum[i]-sum[j]<sum[j]-sum[d[j]]) continue;
d[i]=j; break;
}
int now=n;
while(now){
int t=sum[now]-sum[d[now]];
ans+=t*t;
now=d[now];
}

\(O(n^2)\) 复杂度可以通过64分的好成绩,但是看到 \(2\leq n\leq4\times10^7\),这说明我们需要一个 \(O( n )\) 或实(hen)现(neng)良(ka)好(chang)的 \(O(n\log n)\)。

回顾算法,发现判断 \(j\) 是否合法时的柿子:

\(sum[i]-sum[j]\geq sum[j]-sum[d[j]]\)

可以继续改写:

\(2*sum[j]-sum[d[j]]\leq sum[i]\)

此时左边只与 \(j\) 有关右边只与 \(i\) 有关。设 \(A(j)=2*sum[j]-sum[d[j]]\) 。显然 \(A(j)\) 越小,\(j\) 越可能成为合法答案,所以当存在 \(j_1<j_2\) 且 \(A(j_1)>A(j_2)\) 时,\(j_2\) 比 \(j_1\) 更优。

又有 \(sum[i]\lt sum[i+1]\) 所以当一个 \(j\) 满足 \(A(j)\leq sum[i]\) 时,它也满足 \(A(j)\leq sum[i+1]\)。

基于以上两点我们可以维护出一个 \(A(j)\) 单调上升且 \(j\) 单调上升的单调队列,每次转移时找到最大的满足 \(A(j)\leq sum[i]\) 的 \(j\),小于 \(j\) 的状态可以舍弃,更新 \(d[i]\) 后将 \(A(i)\) 加入队列尾并弹出 \(A(k)>A(i)\) 的状态 \(k\),每个点最多进出1次,所以复杂度是 \(O(n)\)。

于是我们可以这样维护 \(d[i]\):

for(int i=1;i<=n;i++){
while(head<tail&&A(q[head+1])<=sum[i])head++;
d[i]=q[head];
while(head<tail&&A(i)<A(q[tail]))tail--;
q[++tail]=i;
}

另外的,此题最后三个测试点相当毒瘤,输入相当占时间和空间,数据范围会爆 long long。我们不得不选择高精(或考场上不敢写的__int128),同时需要对空间和时间能够精确把控,最好还是自己慢慢调,可以锻炼自己的代码能力。


代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define in read()
inline int read(){
int p=0,f=1;
char c=getchar();
while(c>'9'||c<'0'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){p=p*10+c-'0';c=getchar();}
return p*f;
}
const int N=4e7+5;
ll sum[N];
int d[N],q[N],n,type,head,tail;
inline __int128 A(int i){return 2*sum[i]-sum[d[i]];}
//sub23~25
const int M=1e5+5;
const int mod=1ll<<30;
ll x,y,z,m;
int p[M],l[M],r[M];
ll b[N];
//
__int128 ans;
void print(__int128 x){
if(x==0){
cout<<0;
return ;
}
string res="";
while(x){
res+=x%10+'0';
x/=10;
}
reverse(res.begin(),res.end());
cout<<res;
}
signed main(){
n=in,type=in;
if(type==0)
for(int i=1;i<=n;i++)
sum[i]=sum[i-1]+in;
else{
x=in,y=in,z=in,b[1]=in,b[2]=in,m=in;
for(int i=1;i<=m;i++)
p[i]=in,l[i]=in,r[i]=in;
for(int i=3;i<=n;i++)
b[i]=((x*b[i-1]%mod+y*b[i-2]%mod)%mod+z)%mod;
int now=0;
for(int i=1;i<=n;i++){
if(i>p[now])now++;
sum[i]=sum[i-1]+b[i]%(r[now]-l[now]+1)+l[now];
}
}
for(int i=1;i<=n;i++){
while(head<tail&&A(q[head+1])<=sum[i])head++;
d[i]=q[head];
while(head<tail&&A(i)<A(q[tail]))tail--;
q[++tail]=i;
}
int now=n;
while(now){
__int128 t=sum[now]-sum[d[now]];
ans+=t*t;
now=d[now];
}
print(ans);
return 0;
}

可能是因其毒瘤的数据才成为了紫题

洛谷 P5665 [CSP-S2019] 划分的更多相关文章

  1. 洛谷P4047 [JSOI2010]部落划分题解

    洛谷P4047 [JSOI2010]部落划分题解 题目描述 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落 ...

  2. uoj#348/洛谷P4221 [WC2018]州区划分(FWT)

    传送门(uoj) 传送门(洛谷) 全世界都会子集卷积就咱不会--全世界都在写\(FMT\)就咱只会\(FWT\)-- 前置芝士 或运算\(FWT\)或者\(FMT\) 左转洛谷模板区,包教包会 子集卷 ...

  3. 【CSP-S 2019】【洛谷P5665】划分【单调队列dp】

    前言 \(csp\)时发现自己做过类似这道题的题目 : P4954 [USACO09Open] Tower of Hay 干草塔 然后回忆了差不多\(15min\)才想出来... 然后就敲了\(88p ...

  4. 洛谷——P1025 数的划分

    P1025 数的划分 题目描述 将整数n分成k份,且每份不能为空,任意两个方案不相同(不考虑顺序). 例如:n=7,k=3,下面三种分法被认为是相同的. 1,1,5; 1,5,1; 5,1,1; 问有 ...

  5. 洛谷 P1025 数的划分 Label:dp

    题目描述 将整数n分成k份,且每份不能为空,任意两个方案不相同(不考虑顺序). 例如:n=7,k=3,下面三种分法被认为是相同的. 1,1,5; 1,5,1; 5,1,1; 问有多少种不同的分法. 输 ...

  6. 洛谷 P1025 数的划分

    题目描述 将整数n分成k份,且每份不能为空,任意两个方案不相同(不考虑顺序). 例如:n=7,k=3,下面三种分法被认为是相同的. 1,1,5; 1,5,1; 5,1,1; 问有多少种不同的分法. 输 ...

  7. [NOIP2001] 提高组 洛谷P1025 数的划分

    题目描述 将整数n分成k份,且每份不能为空,任意两个方案不相同(不考虑顺序). 例如:n=7,k=3,下面三种分法被认为是相同的. 1,1,5; 1,5,1; 5,1,1; 问有多少种不同的分法. 输 ...

  8. 洛谷P1025 数的划分【dp】

    将整数nn分成kk份,且每份不能为空,任意两个方案不相同(不考虑顺序). 例如:n=7n=7,k=3k=3,下面三种分法被认为是相同的. 1,1,51,1,5; 1,5,11,5,1; 5,1,15, ...

  9. nbuoj 2080 洛谷p1025 数的划分

    链接:http://www.nbuoj.com/v8.83/Problems/Problem.php?pid=2820 链接:https://www.luogu.org/problem/P1025 题 ...

随机推荐

  1. Vue指令及自定义指令的使用

    导航列表: 一.vue指令 二.自定义指令 一.vue指令 回到顶部    1. v-text v-text主要用来更新textContent,可以等同于JS的text属性,不会解析标签,会把标签解析 ...

  2. OpenGL渲染管道,Shader,VAO&VBO&EBO

    OpenGL渲染管线 (也就是)OpenGL渲染一帧图形的流程 以下列举最简单的,渲染一个三角形的流程,你可以将它视为 精简版OpenGL渲染管线 更复杂的流程也仅仅就是:在此基础上的各个流程中 添加 ...

  3. TP5 数据保存、更新问题(save、saveAll)

    一.今天写项目的时候,突然发现一个坑爹的问题,使用saveAll新增多条数据,但是一直提示缺少更新条件,然而我发现代码里面并没有更新,而且saveAll我仅仅是去新增多条数据而已 原来源码 模型类中有 ...

  4. Java基础系列(32)- 递归讲解

    递归 A方法调用B方法,我们很容易理解 递归就是:A方法调用A方法!就是自己调用自己 利用递归可以用简单的程序来解决一些复杂的问题.它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题 ...

  5. Shell系列(3)- 命令别名

    前言 使用alias命令创建命令别名,是Bash的一个基本功能:别名有两种形式,一种暂时的,Linux重启后失效.另外一种永久的通过该配置文件实现 使用更改别名 临时 命令格式:alias 别名='原 ...

  6. linux系统运维操作规范

    1.1安装流程 1.1.1 系统如无特殊要求一律采用小化安装方式进行安装. 1.1.2 安装过程开始之前需要根据实际情况进行CPU数量.磁盘容量.内存分配.文件系统.目录结构.磁盘分区规划.磁盘管理方 ...

  7. pyqt5 GUI教程

    from PyQt5 import QtCore, QtGui, QtWidgets import sys import qtawesome class MainUi(QtWidgets.QMainW ...

  8. 鸿蒙内核源码分析(编译脚本篇) | 如何防编译环境中的牛皮癣 | 百篇博客分析OpenHarmony源码 | v58.01

    百篇博客系列篇.本篇为: v58.xx 鸿蒙内核源码分析(环境脚本篇) | 编译鸿蒙原来如此简单 | 51.c.h.o 本篇用两个脚本完成鸿蒙(L1)的编译环境安装/源码下载/编译过程,让编译,调试鸿 ...

  9. 2020牛客NOIP赛前集训营-提高组(第三场)C-牛半仙的妹子Tree【虚树,最短路】

    正题 题目链接:https://ac.nowcoder.com/acm/contest/7609/C 题目大意 给出\(n\)个点的一棵树,\(m\)个时刻各有一个操作 标记一个点,每个点被标记后的每 ...

  10. MacOS Typora集成SM.SM图床 实现自动上传图片

    MacOS Typora集成SM.SM图床 实现自动上传图片 此为PicGo-Core (Command line) (OpenSource)配置方法 参照官网 https://support.typ ...