[atAGC106F]Figures
考虑purfer序列,若生成树的pufer序列为$p_{i}$,则答案为$(\prod_{i=1}^{n}a_{i})\sum_{p}\prod_{i=1}^{n}\frac{(a_{i}-1)!}{(a_{i}-1-s_{i})!}$(其中$s_{i}$为$p$中点$i$出现的次数,即度数减1)
(以下令$a_{i}$减1)观察到式子只与$s_{i}$有关,对于相同的$s_{i}$对应$p_{i}$有$\frac{(n-2)!}{\prod_{i=1}^{n}s_{i}!}$种,令$C=(n-2)!\prod_{i=1}^{n}a_{i}$,代入即$ans=C\sum_{\sum_{i=1}^{n}s_{i}=n-2}\prod_{i=1}^{n}\frac{a_{i}!}{s_{i}!(a_{i}-s_{i})!}$
令$f(x)=\sum_{k=0}^{n-2}(\sum_{\sum_{i=1}^{n}s_{i}=k}\frac{a_{i}!}{s_{i}!(a_{i}-s_{i})!})x^{k}=\sum_{s_{i}}\prod_{i=1}^{n}\frac{a_{i}!}{s_{i}!(a_{i}-s_{i})!}\cdot x^{s_{i}}$,答案即$f(x)[x^{n-2}]$
不妨先枚举$s_{1},s_{2},..$,再提取出对应位置上的式子作为公因式,之后由于各位上完全独立,再将结果乘起来就是原式,即$f(x)=\prod_{i=1}^{n}\sum_{s_{i}=0}^{a_{i}}\frac{a_{i}!}{s_{i}!(a_{i}-s_{i})!}\cdot x^{s_{i}}=(1+x)^{\sum_{i=1}^{n}a_{i}}$
因此$f(x)[x^{n-2}]=c(\sum_{i=1}^{n}a_{i},n-2)$(注意这里的$a_{i}$减了1),发现$(n-2)!$已经被抵消掉,因此直接枚举$\sum_{i=1}^{n}a_{i}$到$\sum_{i=1}^{n}a_{i}-(n-2)+1$即可
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define mod 998244353
4 int n,x,s,ans;
5 int main(){
6 scanf("%d",&n);
7 ans=1;
8 for(int i=1;i<=n;i++){
9 scanf("%d",&x);
10 ans=1LL*ans*x%mod;
11 s=(s+x-1)%mod;
12 }
13 for(int i=0;i<n-2;i++)ans=1LL*ans*(s-i+mod)%mod;
14 printf("%d",ans);
15 }
[atAGC106F]Figures的更多相关文章
- LaTeX插入图表方法 Lists of tables and figures
Lists of tables and figures A list of the tables and figures keep the information organized and prov ...
- Deployed component GUIs and figures have different look and feel than MATLAB desktop
原文:http://www.mathworks.com/support/bugreports/1293244 Description Deployed GUIs and figures look an ...
- LaTeX:Figures, Tables, and Equations 插入图表和公式
Figures To insert a figure in a LaTeX document, you write lines like this: \begin{figure} \centering ...
- 图片 响应式图像 Images Figures
响应式图像 Bootstrap中的图像响应 .img-fluid <img class="img-fluid" src="http://lorempixel.com ...
- Figures Inscribed in Curves (曲线上的图形)
Figures Inscribed in Curves\text{Figures Inscribed in Curves}Figures Inscribed in Curves A short tou ...
- Inscribed Figures(思维)
The math faculty of Berland State University has suffered the sudden drop in the math skills of enro ...
- Adding supplementary tables and figures in LaTeX【转】
\renewcommand{\thetable}{S\arabic{table}} \renewcommand{\thefigure}{S\arabic{figure}} 这样就以Table S1, ...
- Wannafly Winter Camp 2020 Day 5J Xor on Figures - 线性基,bitset
有一个\(2^k\cdot 2^k\) 的全零矩阵 \(M\),给出 \(2^k\cdot 2^k\) 的 \(01\) 矩阵 \(F\),现在可以将 \(F\) 的左上角置于 \(M\) 的任一位置 ...
- [cf1270I]Xor on Figures
考虑一个构造:令初始$2^{k}\times 2^{k}$的矩阵为$A$(下标从0开始),再构造一个矩阵$T$,满足仅有$T_{x_{i},y_{i}}=1$(其余位置都为0),定义矩阵卷积$\oti ...
随机推荐
- JVM学习笔记——栈区
栈区 Stack Area 栈是运行时的单位,堆是存储单位,栈解决程序的运行问题,即程序如何执行,如何处理数据. 每个线程在创建时都创建一个该线程私有的虚拟机栈,每个栈里有许多栈帧,一个栈帧对应一个 ...
- [NOIP2013 提高组] 华容道 P1979 洛谷
[NOIP2013 提高组] 华容道 P1979 洛谷 强烈推荐,更好的阅读体验 经典题目:spfa+bfs+转化 题目大意: 给出一个01网格图,和点坐标x,y空格坐标a,b,目标位置tx,ty要求 ...
- 【转-Andrew_qian】stm32中断嵌套全攻略
断断续续学习STM32一学期了,时间过的好快,现在对STM32F103系列单片机的中断嵌套及外部中断做一个总结,全当学习笔记.废话不多说,ARM公司的Cortex-m3 内核,支持256个中断,其中包 ...
- 第三次Scrum Metting
日期:2021年4月27日会议主要内容概述:确定后端和前端接口,前端讨论画图页面,解决两处画图问题 一.进度情况# 组员 负责 两日内已完成的工作 后两日计划完成的工作 工作中遇到的困难 徐宇龙 后端 ...
- SpringBoot小知识点
记录SpringBoot的小知识点 一.在 Spring 上下文刷新之前设置一些自己的环境变量 1.实现 EnvironmentPostProcessor 接口 2.spring.factories ...
- spring security中ajax超时处理
spring security为我们的系统提供了方便的认证和授权操作.在系统中完成认证和授权后,一般页面页面上大多数是ajax和后台进行操作,那么这个时候可能就会面临session超时,ajax去访问 ...
- rabbitmq死信队列和延时队列的使用
死信队列&死信交换器:DLX 全称(Dead-Letter-Exchange),称之为死信交换器,当消息变成一个死信之后,如果这个消息所在的队列存在x-dead-letter-exchange ...
- WiFi模块选型参考
经常会碰到一些关于wifi模块的咨询,很多刚接触wifi模块的设计人员或者用户,只知道提wifi模块,很难提具体的模块要求!希望通过文章的介绍,会做到有的放矢!咨询时一定要搞清楚自己希望使用什么主芯片 ...
- Python爬虫之爬取淘女郎照片示例详解
这篇文章主要介绍了Python爬虫之爬取淘女郎照片示例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧 本篇目标 抓取淘宝MM ...
- opencv学习(一)——图像入门
图像入门 一.读取图像 在opencv中使用cv.imread(filename, flags)函数读取图像.filename参数表示读取图像的路径.读取图像的路径应完整给出,且不能含有中文,否则在调 ...