Update

  • \(\texttt{2021.11.27}\) 修复了代码中的 \(10000\) 写成 \(n\) 的错误。

Content

一个家庭住在一个胡同里面,门牌号从 \(1\) 开始编号。其余门牌号的和减去这个家庭的门牌号的两倍恰好等于 \(n\),求这个家庭的门牌号和胡同的门牌号总数。

数据范围:\(n<10^5\)。

Solution

如果设胡同的门牌号总数为 \(m\),并设这个家庭的门牌号为 \(k\),则由题意可得(其中 \([i\neq k]\) 表示如果 \(i\neq k\),则这个值为 \(1\),否则为 \(0\)):

\[\sum\limits_{i=1}^mi[i\neq k]-2k=n
\]

如果我们把这个 \(\sum\limits_{i=1}^mi[i\neq k]\) 转化一下:

\[\begin{aligned}1+2+\dots+k-1+k+1+\dots+m&=1+2+\dots+m-k\\&=\sum\limits_{i=1}^mi-k\end{aligned}
\]

所以:

\[\begin{aligned}\sum\limits_{i=1}^mi-k-2k&=n\\3k&=\sum\limits_{i=1}^mi-n\\k&=\dfrac{\sum\limits_{i=1}^mi-n}{3}\end{aligned}
\]

用等差数列求和公式将 \(\sum\limits_{i=1}^mi\) 转化为 \(\dfrac{m(m+1)}2\) 可得:

\[k=\dfrac{\dfrac{m(m+1)}2-n}3
\]

因此,我们可以枚举 \(m\),然后是否满足以下两个条件:

  • \(\dfrac{m(m+1)}2>n\)。
  • \(3\mid(\dfrac{m(m+1)}2-n)\)(表示 \(3\) 能整除 \(\dfrac{m(m+1)}2-n\))。

可以发现,一旦满足了以上两个条件,\(m\) 此时的值依然很小,因此这样枚举是可以通过这道题的。

Code

#include <cstdio>
using namespace std; int main() {
int n; scanf("%d", &n);
for(int i = 1; i <= 10000; ++i) {
int ans = i * (i + 1) / 2;
if(ans > n && !((ans - n) % 3)) {printf("%d %d", (ans - n) / 3, i); return 0;}
}
return 0;
}

LuoguB2133 我家的门牌号 题解的更多相关文章

  1. NOI上看到的几个小学奥数

    :余数相同问题 查看 提交 统计 提问 总时间限制: 1000ms 内存限制: 65536kB 描述 已知三个正整数 a,b,c. 现有一个大于1的整数x,将其作为除数分别除a,b,c,得到的余数相同 ...

  2. OpenJudge解题经验交流

    1.1编程基础之输入输出01:Hello, World! 02:输出第二个整数PS:a,b需用longint类型接收 03:对齐输出 04:输出保留3位小数的浮点数 05:输出保留12位小数的浮点数 ...

  3. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  4. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  5. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  6. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  7. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  8. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  9. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

随机推荐

  1. oracle和mysql的拼接查询

    oracle的 SELECT * FROM sys_user a WHERE 1=1 AND a.company_id || a.login_name IN('3001rddb414') 196676 ...

  2. Kubernetes Deployment 最佳实践

    零.示例 首先给出一个 Deployment+HPA+ PodDisruptionBudget 的完整 demo,后面再详细介绍其中的每一个部分: apiVersion: apps/v1 kind: ...

  3. (前端)面试300问之(2)CSS元素居中【水平、垂直、2者同时居中】

    一 仅水平居中 1 行内元素 1)给父元素添加 text-align:center 即可 <div class="parent"> <span class=&qu ...

  4. try catch引发的性能优化深度思考

    关键代码拆解成如下图所示(无关部分已省略): 起初我认为可能是这个 getRowDataItemNumberFormat 函数里面某些方法执行太慢,从 formatData.replace 到 une ...

  5. 『学了就忘』Linux权限管理 — 53、ACL权限详解

    目录 1.什么是ACL权限 2.开启ACL 3.ACL权限的相关命令 (1)设定ACL权限 (2)查询文件的ACL权限 (3)设置文件ACL权限给用户组 (4)给文件夹和里边的文件同时赋予ACL权限 ...

  6. 联盛德 HLK-W806 (五): W801开发板上手报告

    目录 联盛德 HLK-W806 (一): Ubuntu20.04下的开发环境配置, 编译和烧录说明 联盛德 HLK-W806 (二): Win10下的开发环境配置, 编译和烧录说明 联盛德 HLK-W ...

  7. 洛谷 P6072 -『MdOI R1』Path(回滚莫队+01-trie)

    题面传送门 又是 ix35 神仙出的题,先以 mol 为敬 %%% 首先预处理出根节点到每个点路径上权值的异或和 \(dis_i\),那么两点 \(a,b\) 路径上权值的异或和显然为 \(dis_a ...

  8. rust Option枚举

    枚举 1 fn main() { 2 let a_binding; 3 { 4 let x = 2; 5 a_binding = x * x; 6 } 7 println!("a bindi ...

  9. Demo01无重复数字

    package 习题集2;//有1,2,3,4四个数字,能组成多少个互不相同且无重复数字的三位数?都是多少?public class Demo1 { public static void main(S ...

  10. 『与善仁』Appium基础 — 19、元素定位工具(三)

    目录 1.Chrome Inspect介绍 2.Chrome Inspect打开方式 3.Chrome Inspect工具的使用 (1)Chrome Inspect工作前提 (2)Chrome Ins ...