UVA10090 数论基础 exgcd
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1031
题目大意:有n块大理石,然后有两种盒子,cost分别为c1,c2,容量分别为n1,n2,问你装完这些大理石所需要的最小花费是多少
思路分析:设最终选择x个第一种盒子,y个第二种盒子
根据题目,有 n1*x+n2*y=n ,让求T=c1*x+c2*y的最小值
解不定方程,容易想到使用exgcd ,n1*x0+n2*y0=gcd(n1,n2)
比较两式即可得到x=n*x0/gcd(n1,n2),y=n*y0/gcd(n1,n2)
结果肯定为正整数么,若n%gcd(n1,n2)!=0,则无解
通解为 x=n*x0/gcd(n1,n2) +k*n2/gcd(a,b)
y=n*y0/gcd(n1,n2)-k*n1/gcd(a,b)
同时要求x>=0,y>=0,我们就可以解得k的范围
k1=ceil(-n*x0/n2)<=k<=floor(n*y0/n1)=k2
若k1>k2,说明也是无解
否则带入T表达式 T=c1*(n*x0/gcd(n1,n2) +k*n2/gcd(a,b))+c2*( n*y0/gcd(n1,n2)-k*n1/gcd(a,b))
整理发现这是一个关于k的一次函数,系数为m=c1*n2-c2*n1,若m>=0,递增,取k1
否则取k2
代码:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long ll;
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==)
{
x=;
y=;
return a;
}
ll d=exgcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
int main()
{
ll n;
ll c1,n1,c2,n2;
while(scanf("%lld",&n)&&n)
{
ll x,y;
scanf("%lld%lld",&c1,&n1);
scanf("%lld%lld",&c2,&n2);
ll g=exgcd(n1,n2,x,y);
if(n%g) {printf("failed\n");continue;}
ll x0=x,y0=y;
x=x*n/g;
y=y*n/g;
ll k1=ceil((-n*x0/(double)n2));
ll k2=floor(n*y0/(double)n1);
if(k1>k2) {printf("failed\n");continue;}
ll t=c1*n2-c2*n1;
ll ans1,ans2;
if(t>=)
{
ans1=x+k1*n2/g,ans2=y-k1*n1/g;
}
else ans1=x+k2*n2/g,ans2=y-k2*n1/g;
printf("%lld %lld\n",ans1,ans2);
}
}
UVA10090 数论基础 exgcd的更多相关文章
- 「kuangbin带你飞」专题十四 数论基础
layout: post title: 「kuangbin带你飞」专题十四 数论基础 author: "luowentaoaa" catalog: true tags: mathj ...
- 你也可以手绘二维码(二)纠错码字算法:数论基础及伽罗瓦域GF(2^8)
摘要:本文讲解二维码纠错码字生成使用到的数学数论基础知识,伽罗瓦域(Galois Field)GF(2^8),这是手绘二维码填格子理论基础,不想深究可以直接跳过.同时数论基础也是 Hash 算法,RS ...
- 【BZOJ5418】【NOI2018】屠龙勇士(数论,exgcd)
[NOI2018]屠龙勇士(数论,exgcd) 题面 洛谷 题解 考场上半个小时就会做了,一个小时就写完了.. 然后发现没过样例,结果大力调发现中间值爆\(longlong\)了,然后就没管了.. 然 ...
- 从BZOJ2242看数论基础算法:快速幂,gcd,exgcd,BSGS
LINK 其实就是三个板子 1.快速幂 快速幂,通过把指数转化成二进制位来优化幂运算,基础知识 2.gcd和exgcd gcd就是所谓的辗转相除法,在这里用取模的形式体现出来 \(gcd(a,b)\) ...
- 数论基础算法总结(python版)
/* Author: wsnpyo Update Date: 2014-11-16 Algorithm: 快速幂/Fermat, Solovay_Stassen, Miller-Rabin素性检验/E ...
- kuangbin专题 数论基础 part1?
线段树专题太难了,那我来做数学吧! 但数学太难了,我......(扯 这两天想了做了查了整理了几道数学. 除了一些进阶的知识,像莫比乌斯反演,杜教筛,min25学不会我跳了,一些基础的思维还是可以记录 ...
- lightoj1336数论基础
#include<iostream> #include<cstdio> #include<cmath> #define ll long long using nam ...
- 1370 - Bi-shoe and Phi-shoe(LightOJ1370)(数论基础,欧拉函数)
http://lightoj.com/volume_showproblem.php?problem=1370 欧拉函数: 在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目. φ(n) ...
- 密码学数论基础部分总结之 有限域GF(p) Galois Fields
今天花了一下午的时间学习密码学的数论部分,下面将学到的内容进行一下总结,也算是加深记忆.我本身对密码学这方面比较感兴趣,而且本节出现了许多数学公式,使用刚刚学习的LaTex公式来呈现出来,练习练习,何 ...
随机推荐
- 基于CAShapeLayer和贝塞尔曲线的圆形进度条动画
通过CAShapeLayer和贝塞尔曲线搭配的方法,创建的简单的圆形进度条的教程先简单的介绍下CAShapeLayer1,CAShapeLayer继承自CALayer,可使用CALayer的所有属性2 ...
- 转:MFC创建多线程实例
作者:http://blog.csdn.net/wangningyu/article/details/4404134 平时在MFC里使用多线程时其实是很方面的,因为微软提供了一个API让我们很方面的去 ...
- uva 10014 Simple calculations
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- POSTGRESQL小玩
因为CDH上需要用它来建HIVE的元库... 参考: http://www.cnblogs.com/mchina/archive/2012/06/06/2539003.html 一.简介 Postgr ...
- Android系统提供了哪些东西,供我们可以开发出优秀的应用程序
1. 四大组件Android系统四大组件分别是活动(Activity).服务(Service).广播接收器(Broadcast Receiver)和内容提供器(Content Provider).其中 ...
- P0口上拉电阻选择
如果是驱动led,那么用1K左右的就行了.如果希望亮度大一些,电阻可减小,最小不要小于200欧姆,否则电流太大:如果希望亮度小一些,电阻可增大,增加到多少呢,主要看亮度情况,以亮度合适为准,一般来说超 ...
- Android中观察者模式的升入理解
以前对Java中的观察者模式只知道一点皮毛,在接触Android的过程中,逐渐认识到观察者模式是如此的重要,android中许多地方都用到了观察者模式例如ContentResolver操作,来总结一下 ...
- log4jdbc
log4jdbc http://www.blogjava.net/badqiu/archive/2010/08/20/329464.html http://blog.csdn.net/sfdev/ar ...
- Graphviz-Gdot语言学习
GVEdit这个绘图软件呢我也是刚接触的,感觉画起图来还是很爽的...尤其很熟悉c++后很容易上手这门dot语言. 先看一下十分清新的编程界面: 没有天下最邪恶的语法加亮,没有缩进行...这又算什么! ...
- BZOJ2038: [2009国家集训队]小Z的袜子(hose) -- 莫队算法 ,,分块
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 3577 Solved: 1652[Subm ...