本文为《Kernel Logistic Regression and the Import Vector Machine》的阅读笔记
是技法课的课外阅读

Abstract:
基于KLR kernel logistic regression,能自然延伸到多分类问题
提供属于各类的概率
也有类似support vector,且这部分training data占比比SVM小

algrithm:
IVM基于Kernal logistic regression(KLR),下面介绍KLR

原始logistic regression为:
$H = -\frac{1}{n}\sum_i^n \left\{ [y_i=1]ln(p(x_i))+[y_i=0]ln(1-p(x_i))\right \}+\frac{\lambda}{2}w^tw$ (1)
其中$p(x)=\frac{1}{1+exp(-(xw+b))}$

根据represent theory,$xw=\sum_i^n K(x,x_i)a_i$(2),这里K表示kernel
(1)中前半部分,很容易用(2)替换后得到对应的kernel化版本
(1)中后半部分,令$a=(a_1,a_2,...,a_n)$,$K$为nxn的矩阵,$K_{ij}=K(x_i,x_j)$,
$X$为nxd的矩阵,n为样本量,d为每个样本变换后的维度,$K=XX^t$根据(2),有
$Xw=Ka=XX^ta$,$w=X^ta$,$w^tw=a^tXX^ta=a^tKa$

$H=\frac{1}{n}\sum_i^n \left\{ [y_i=1]ln(1+exp(-f(x_i)))+[y_i=0]ln(1+exp(f(x_i)))\right \}+\frac{\lambda}{2}a^tKa$(3)
其中$f(x)=b+\sum_{x_i\in S} K(x,x_i)a_i,S=\left\{x_1,x_2,...,x_n\right\}$(4)

由于KLR并非hinge loss,所以解完后得到的每个$a_i$都不等于0
IVM是基于KLR的,所做的改进即选出一些$a_i\neq 0$,而其他$a_i=0$,这些不等于0的样本点,类似于SVM的support vector,此处叫Import point

令这些Import point组成的集合成为$S$,大小为$n_s$,此时(4)式中的$S$只包含Import point
(3)式中的$K$也有变动
重新考虑(2)式:$xw=\sum_i^n K(x,x_i)a_i$,令$X_s$为由Import point变换后组成的矩阵,大小为$n_s\times d,$令$K_a=XX_s^t$为$n\times n_s$的矩阵
有$Xw = K_a a = XX_s^t a$,$w = X_s^t a$,$w^tw = a^tX_sX_s^ta=a^tK_q a$,此处$K_q=X_sX_s^t$,是$n_s\times n_s$的矩阵

用牛顿法求解$H$,令$H_1=\frac{1}{n}\sum_i^n \left\{ [y_i=1]ln(1+exp(-f(x_i)))+[y_i=0]ln(1+exp(f(x_i)))\right \}$,$H_2=\frac{\lambda}{2}a^tK_qa$
$\frac{\partial H_1}{\partial a_j} = \frac{1}{n}\sum_i^n \left\{ -[y_i=1]K(x_i,x_j)\frac{exp(-f(x_i))}{1+exp(-f(x_i))}+[y_i=0]K(x_i,x_j)\frac{exp(f(x_i))}{1+exp(f(x_i))}\right \}\\ \ \ \ = \frac{1}{n}\sum_i^n \left\{ -[y_i=1]K(x_i,x_j)(1-p(x_i))+[y_i=0]K(x_i,x_j)p(x_i)\right \}\\ \ \ \ = \frac{1}{n}\sum_i^n \left\{ -y_iK(x_i,x_j)(1-p(x_i))+(1-y_i)K(x_i,x_j)p(x_i)\right \}\\ \ \ \ = \frac{1}{n}\sum_i^n (p(x_i)-y_i)K(x_i,x_j)=\frac{1}{n}\sum_i^n {K_a^t}_{ji}{(p-y)}_{i1}=\frac{1}{n} {[K_a^t(p-y)]}_{j1}$
由于$H_2$是一个数字,所以$trace H_2=H_2$
$\partial a\ trace H_2 = \partial a\ trace \frac{\lambda}{2}a^tK_qa = \frac{\lambda}{2}(K_qa+K_qa)=\lambda K_qa$
$\frac{\partial H_2}{\partial a_j}=\lambda {[K_qa]}_{j1}=\lambda \sum_i^{n_s} {[K_q]}_{ji}a_{i1}$

$\frac{\partial^2 H_1}{\partial a_j\partial a_z}=\frac{1}{n}\sum_i^n \frac{exp(-f(x_i))}{(1+exp(-f(x_i)))^2}K(x_i,x_z)K(x_i,x_j)=\frac{1}{n}\sum_i^np(x_i)(1-p(x_i)){[K_a]}_{iz}{[K_a]}_{ij}$
令$W=diag(p(x_i)(1-p(x_i)))$
$\frac{\partial^2 H_1}{\partial a_j\partial a_z}=\frac{1}{n}\sum_i^n {[K_a^t]}_{ji}W_{ii}{[K_a]}_{iz}=\frac{1}{n} {[K_a^tWK_a]}_{jz}$
$\frac{\partial^2 H_2}{\partial a_j\partial a_z}=\lambda {[K_q]}_{jz}$

根据牛顿法的更新公式:$\alpha_{k+1} = \alpha_{k}-Hessian^{-1}g$
$a_{k+1} = a_{k}+{(\frac{1}{n} K_a^tWK_a+\lambda K_q)}^{-1}(\frac{1}{n}K_a^t(y-p)-\lambda K_qa_k)\\ \ \ \ ={(\frac{1}{n} K_a^tWK_a+\lambda K_q)}^{-1} (\frac{1}{n}K_a^t(y-p)-\lambda K_qa_k+\frac{1}{n} K_a^tWK_aa_k+\lambda K_qa_k)\\ \ \ \ ={(\frac{1}{n} K_a^tWK_a+\lambda K_q)}^{-1} (\frac{1}{n}K_a^t[(y-p)+WK_aa_k])$ (3)

detail:
1.$S=\emptyset$,$R={x_1,x_2,...,x_n}$
2.遍历R中的每一个样本,令$S=S\bigcup x_l$,求解a,使H最小
3.选取使H最小的$x_l$,记此时H的値为$H_{k+1}$
4.如果$\frac{|H_{k+1}-H_k|}{H_k}<\eta$,判定为收敛,返回S,以及a;否则重复2-4,直到收敛(通常设$\eta=0.001$)

2步骤中如果加入一个$x_l$,就要进行一轮牛顿法的迭代,是很花时间的,改为如下更新策略
每一次加入一个$x_l$,按公式(3)执行一次迭代

IVM import vector machine的更多相关文章

  1. 6. support vector machine

    1. 了解SVM 1. Logistic regression 与SVM超平面 给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些数据分成两类.如果用x表示数据点,用y表示类别( ...

  2. 使用Support Vector Machine

    使用svm(Support Vector Machine)中要获得好的分类器,最重要的是要选对kernel. 常见的svm kernel包括linear kernel, Gaussian kernel ...

  3. Support Vector Machine (3) : 再谈泛化误差(Generalization Error)

    目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...

  4. Support Vector Machine (2) : Sequential Minimal Optimization

    目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...

  5. PRML读书会第七章 Sparse Kernel Machines(支持向量机, support vector machine ,KKT条件,RVM)

    主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:59:22  大家好,今天一起交流下PRML第7章.第六章核函数里提到,有一类机器学习算法,不是对参数做点估计或求其分 ...

  6. Support Vector Machine (1) : 简单SVM原理

    目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...

  7. 支持向量机 support vector machine

    SVM(support Vector machine) (1) SVM(Support Vector Machine)是从瓦普尼克(Vapnik)的统计学习理论发展而来的,主要针对小样本数据进行学习. ...

  8. A glimpse of Support Vector Machine

    支持向量机(support vector machine, 以下简称svm)是机器学习里的重要方法,特别适用于中小型样本.非线性.高维的分类和回归问题.本篇希望在正篇提供一个svm的简明阐述,附录则提 ...

  9. 支持向量机SVM(Support Vector Machine)

    支持向量机(Support Vector Machine)是一种监督式的机器学习方法(supervised machine learning),一般用于二类问题(binary classificati ...

随机推荐

  1. [Ubuntu]在Ubuntu下搭建自己的源服务器

    1.摘要     网上有很很多关于搭建源镜像的文章,但是对于一般人来讲,用不着镜像所有的deb包,只对我们能用到的感兴趣.另外,对于一些在Ubuntu的源中没有的软件,我们也可以放在我们自己的源里,这 ...

  2. JS Message 网页消息提醒

    JS message是一个非常小的(用gzip压缩之后才3kb)JavaScript library 用于轻松在网页上展示通知提醒.除了通知,它还支持创建带风格的对话框和确认对话框.不需要任何JS框架 ...

  3. nginx编译配置

    1, 正向代理是一个位于内网客户端和外网原始服务器之间的服务器,为了从原始服务器取得内容,客户端向代理发送一个请求并指定目标,然后由代理服务器向 原始服务器转交请求并将获得的内容返回给客户端.正向代理 ...

  4. java编译相关问题总结

    参考:http://jingyan.baidu.com/article/5bbb5a1b080f6113eba179f0.html 1.在linux下生成的class文件/jar包,拿到windows ...

  5. Python高阶函数

    在Python中,函数名也是一个变量,可以进行赋值  高阶函数是至少满足下列一个条件的函数: 接受一个或多个函数作为输入 输出一个函数 函数名也可以作为函数参数,还可以作为函数返回值 def f(n) ...

  6. 【组合数学:第一类斯特林数】【HDU3625】Examining the Rooms

    Examining the Rooms Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  7. for循环删除集合陷阱

    首先看下面的代码: import java.util.LinkedList;import java.util.List; public class DeleteCollection {         ...

  8. 在IIS上Office Word下载失败,检索 COM 类工厂中 CLSID 为000209FF的组件失败,80070005 拒绝访问。

    最近在做一个网站时,有一个下载word文档功能,在本地直接调试是可以下载的,但部署到IIS上就出现问题了. 出现问题如下:Error:下载简历方法出错:检索 COM 类工厂中 CLSID 为 {000 ...

  9. WebService调用1(.Net)

    1.创建一个最简单的Web Service (1)  新建-项目-ASP.NET空WEB应用程序 (2)添加新项-WEB服务 默认会添加一个HelloWorld方法: using System; us ...

  10. Hibernate 查询:HQL查询(Hibernate Query Languge)

    HQL是一种面向对象的查询语言,其中没有表和字段的概念,只有类,对象和属性的概念. 使用HQL查询所有学生: public static void main(String[] args) { Sess ...