Largest Rectangle in a Histogram


Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 11637    Accepted Submission(s): 3197

Problem Description

A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights
2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles:





Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned
at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.

 

Input

The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1 <= n <= 100000. Then follow n integers h1, ..., hn, where 0 <= hi <= 1000000000.
These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.

 

Output

For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.

 

Sample Input

7 2 1 4 5 1 3 3

4 1000 1000 1000 1000

0



Sample Output

8

4000

 

Source

University of Ulm Local Contest 2003

题目大意:给你一个直方图,告诉你各个条形矩形的高度,求基线对齐构成的矩形中面积

最大的矩形的面积对于每个矩形。面积 = h[i]*(j-k+1),当中j,k是左右边界,h[i]是矩形

的高。而且对于j <= x <= k,h[i] <= h[x]。

本题中,找到左右边界j,k是关键。

利用动态规划的方法,对于位置i,假设左边条形矩形的高度大于它本身,那么左边的左边

界一定也满足位置i的左边界。同理假设右边条形矩形的高度大于它本身,那么右边的右边

界也一定满足位置i的右边界。迭代循环下去。直到找到i的左右边界。

#include<stdio.h>
#include<string.h> int l[100010],r[100010];
__int64 h[100010];
int main()
{
int N;
while(~scanf("%d",&N) && N!=0)
{
memset(h,0,sizeof(h));
for(int i = 1; i <= N; i++)
{
scanf("%I64d",&h[i]);
l[i] = r[i] = i;
} l[0] = 1;
r[N+1] = N;
h[0] = -1;
h[N+1] = -1;
//这上边不加就会超时,不加的话下边就可能一直while,跳不出循环
for(int i = 1; i <= N; i++)
{
while(h[l[i]-1] >= h[i])//找位置i的左边界
l[i] = l[l[i]-1];
}
for(int i = N; i >= 1; i--)
{
while(h[r[i]+1] >= h[i])//找位置i的右边界
r[i] = r[r[i]+1];
}
__int64 MaxArea = -0xffffff0;
for(int i = 1; i <= N; i++)
{
if(h[i]*(r[i]-l[i]+1) > MaxArea)
MaxArea = h[i]*(r[i]-l[i]+1);
}
printf("%I64d\n",MaxArea);
}
return 0;
}

HDU1506_Largest Rectangle in a Histogram的更多相关文章

  1. poj 2559 Largest Rectangle in a Histogram - 单调栈

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19782 ...

  2. DP专题训练之HDU 1506 Largest Rectangle in a Histogram

    Description A histogram is a polygon composed of a sequence of rectangles aligned at a common base l ...

  3. Largest Rectangle in a Histogram(DP)

    Largest Rectangle in a Histogram Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K ...

  4. POJ 2559 Largest Rectangle in a Histogram(单调栈)

    传送门 Description A histogram is a polygon composed of a sequence of rectangles aligned at a common ba ...

  5. Largest Rectangle in a Histogram(HDU1506)

    Largest Rectangle in a Histogram HDU1506 一道DP题: 思路:http://blog.csdn.net/qiqijianglu/article/details/ ...

  6. POJ 2559 Largest Rectangle in a Histogram

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18942   Accepted: 6083 Description A hi ...

  7. Largest Rectangle in a Histogram

    2107: Largest Rectangle in a Histogram Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 777  Solved: 22 ...

  8. HDU 1506 Largest Rectangle in a Histogram (dp左右处理边界的矩形问题)

    E - Largest Rectangle in a Histogram Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format: ...

  9. hdu---1506(Largest Rectangle in a Histogram/dp最大子矩阵)

    Largest Rectangle in a Histogram Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

随机推荐

  1. json概述及python处理json等数据类型

    <一,概念> 序列化(Serialization):将对象的状态信息转换为可以存储或可以通过网络传输的过程,传输的格式可以是JSON.XML等.反序列化(deserialization): ...

  2. Python-求助 SAE 如何使用第三方库? - 德问:编程社交问答

    Python-求助 SAE 如何使用第三方库? - 德问:编程社交问答 求助 SAE 如何使用第三方库?

  3. javascript第十三课:Json

    js中的json就是字典,Dictionary,就是字典的简化创建方式,json的遍历使用for in的方式,进行遍历 遍历复杂json格式 (如果数组里面存储的是键值对的话,字符串最好用双引号) v ...

  4. VB读写Excel

        近期用excel和VB比較多,就简单的学习了一下VB中对Excel的处理.今天就介绍一些吧.       在VB中要想调用Excel,须要打开VB编程环境“project”菜单中的“引用”项目 ...

  5. IKAnalyzer使用停用词词典进行分词

    @Test // 測试分词的效果,以及停用词典是否起作用 public void test() throws IOException { String text = "老爹我们都爱您.&qu ...

  6. 【Android】Intent中使用Extra传递数据

    传值方法一 Intent intent = new Intent(); Bundle bundle = new Bundle(); //该类用作携带数据 bundle.putString(" ...

  7. Android 查看通讯录Contacts是否发生变化

    目的:确定通讯录是否发生变化 根据:參见ContactsContract.RawContacts类中的VERSION常量,该值是仅仅读的,当通讯录发生变化时,都会使该值变化 方法:version值是相 ...

  8. JavaScript创建类的方式

    一些写类工具函数或框架的写类方式本质上都是 构造函数+原型.只有理解这一点才能真正明白如何用JavaScript写出面向对象的代码,或者说组织代码的方式使用面向对象方式.当然用JS也可写出函数式的代码 ...

  9. (五)认识Android中的Service

    一.使用Service 1.右击java文件夹,选择新建Service,然后重写其中的onStartCommand函数,只要执行了startService函数,onStartCommand便会被执行 ...

  10. web.config详解

    在开发中经常会遇到这样的情况,在部署程序时为了保密起见并不将源代码随项目一同发布,而我们开发时的环境与部署环境可能不一致(比如数据库不一样),如果在代码中保存这些配置这些信息部署时需要到用户那里更改代 ...