# -*- coding: utf-8 -*-
#code:myhaspl@myhaspl.com
#归一化块滤波
import cv2
import numpy as np
fn="test3.jpg"
myimg=cv2.imread(fn)
img=cv2.cvtColor(myimg,cv2.COLOR_BGR2GRAY) #加上高斯噪声,能够參考曾经博文中的内容
......
......
#滤波去噪
lbimg=cv2.blur(newimg,(3,3))
cv2.imshow('src',newimg)
cv2.imshow('dst',lbimg)
cv2.waitKey()
cv2.destroyAllWindows()

右图是加上噪声,左图是去除噪声后,尽管进行了图像模糊,但仍能比較清晰

依据原理,使用第3个脉冲响应函数(也有人称它为核函数),例如以下:

本博客全部内容是原创,假设转载请注明来源

http://blog.csdn.net/myhaspl/

用python实现这个算法

#code:myhaspl@myhaspl.com
#归一化块滤波
...
...
#用第3个脉冲响应函数
a=1/16.0
kernel=a*np.array([[1,2,1],[2,4,2],[1,2,1]])
for y in xrange(1,myh-1):
for x in xrange(1,myw-1):
lbimg[y,x]=np.sum(kernel*tmpimg[y-1:y+2,x-1:x+2])
print ".",

效果例如以下图

opencv提供的blur函数使用说明例如以下 :

Blurs an image using the normalized box filter.

C++: void blur(InputArray src, OutputArray dst, Size ksize, Pointanchor=Point(-1,-1), int borderType=BORDER_DEFAULT )
Python: cv2.blur(src, ksize[, dst[, anchor[, borderType]]]) → dst
Parameters:
  • src – input image; it can have any number of channels, which are processed independently, but the depth should be CV_8UCV_16U,CV_16SCV_32F or CV_64F.
  • dst – output image of the same size and type as src.
  • ksize – blurring kernel size.
  • anchor – anchor point; default value Point(-1,-1) means that the anchor is at the kernel center.
  • borderType – border mode used to extrapolate pixels outside of the image.

注意,blur函数使用了第1个脉冲响应函数,例如以下:

The function smoothes an image using the kernel:

对椒盐噪声的归一化块滤波滤波,须要将作用域扩大,但会更模糊,但效果更好
# -*- coding: utf-8 -*-
#code:myhaspl@myhaspl.com
#归一化块滤波
import cv2
import numpy as np
fn="test3.jpg"
myimg=cv2.imread(fn)
img=cv2.cvtColor(myimg,cv2.COLOR_BGR2GRAY) #加上椒盐噪声
#灰阶范围
w=img.shape[1]
h=img.shape[0]
newimg=np.array(img)
#噪声点数量
noisecount=100000
for k in xrange(0,noisecount):
xi=int(np.random.uniform(0,newimg.shape[1]))
xj=int(np.random.uniform(0,newimg.shape[0]))
newimg[xj,xi]=255 #滤波去噪
lbimg=cv2.blur(newimg,(5,5))
cv2.imshow('src',newimg)
cv2.imshow('dst',lbimg)
cv2.waitKey()
cv2.destroyAllWindows()

本博客全部内容是原创,假设转载请注明来源

http://blog.csdn.net/myhaspl/

数学之路-python计算实战(15)-机器视觉-滤波去噪(归一化块滤波)的更多相关文章

  1. 数学之路-python计算实战(17)-机器视觉-滤波去噪(中值滤波)

    Blurs an image using the median filter. C++: void medianBlur(InputArray src, OutputArray dst, int ks ...

  2. 数学之路-python计算实战(21)-机器视觉-拉普拉斯线性滤波

    拉普拉斯线性滤波,.边缘检測  . When ksize == 1 , the Laplacian is computed by filtering the image with the follow ...

  3. 数学之路-python计算实战(20)-机器视觉-拉普拉斯算子卷积滤波

    拉普拉斯算子进行二维卷积计算,线性锐化滤波 # -*- coding: utf-8 -*- #线性锐化滤波-拉普拉斯算子进行二维卷积计算 #code:myhaspl@myhaspl.com impor ...

  4. 数学之路-python计算实战(14)-机器视觉-图像增强(直方图均衡化)

    我们来看一个灰度图像,让表示灰度出现的次数,这样图像中灰度为 的像素的出现概率是  是图像中全部的灰度数, 是图像中全部的像素数,  实际上是图像的直方图,归一化到 . 把  作为相应于  的累计概率 ...

  5. 数学之路-python计算实战(19)-机器视觉-卷积滤波

    filter2D Convolves an image with the kernel. C++: void filter2D(InputArray src, OutputArray dst, int ...

  6. 数学之路-python计算实战(9)-机器视觉-图像插值仿射

    插值 Python: cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) → dst interpolation – interpol ...

  7. 数学之路-python计算实战(13)-机器视觉-图像增强

    指数变换的基本表达式为:y=bc(x-a)-1 当中參数b.c控制曲线的变换形状,參数a控制曲线的位置. 指数变换的作用是扩展图像的高灰度级.压缩低灰度级.能够用于亮度过高的图像 本博客全部内容是原创 ...

  8. 数学之路-python计算实战(16)-机器视觉-滤波去噪(邻域平均法滤波)

    # -*- coding: utf-8 -*- #code:myhaspl@myhaspl.com #邻域平均法滤波,半径为2 import cv2 import numpy as np fn=&qu ...

  9. 数学之路-python计算实战(18)-机器视觉-滤波去噪(双边滤波与高斯滤波 )

    高斯滤波就是对整幅图像进行加权平均的过程.每个像素点的值,都由其本身和邻域内的其它像素值经过加权平均后得到.高斯滤波的详细操作是:用一个模板(或称卷积.掩模)扫描图像中的每个像素.用模板确定的邻域内像 ...

随机推荐

  1. s3c2440栈分配情况(fl2440裸机 stack)

    //2440INIT.S ;The location of stacks UserStack EQU (_STACK_BASEADDRESS-0x3800) ;0x33ff4800 ~ SVCStac ...

  2. jquery 几点注意事项

    jquery触发hover事件 使用 mouseenter/mouseleave/mouseover/mouseout

  3. Qt之OpenSSL(有pro文件的路径格式)

    简述 OpenSSL是一个强大的安全套接字层密码库,囊括主要的密码算法.常用的密钥和证书封装管理功能及SSL协议,并提供丰富的应用程序供测试或其它目的使用. 简述 下载安装 使用 更多参考 下载安装 ...

  4. maven GroupID和ArtifactID填什么

    GroupID是项目组织唯一的标识符,实际对应JAVA的包的结构,是main目录里java的目录结构. ArtifactID就是项目的唯一的标识符,实际对应项目的名称,就是项目根目录的名称.一般Gro ...

  5. elk 索引

    zjtest7-redis:/usr/local/logstash-2.3.4/config# cat logstash_agent.conf input { file { type => &q ...

  6. iOS-容易造成循环引用的三种场景

    ARC已经出来很久了,自动释放内存的确很方便,但是并非绝对安全绝对不会产生内存泄露.导致iOS对象无法按预期释放的一个无形杀手是——循环引 用.循环引用可以简单理解为A引用了B,而B又引用了A,双方都 ...

  7. ExtJS学习第一天 MessageBox

    此文用来记录学习笔记: •学习任何技术,首先都要从Helloworld开始,那么我们首要任务就是写一个简单的HelloWorld程序,带领同学们走进ExtJS的世界. •Ext.onReady:这个方 ...

  8. 【Eclipse】Tomcat 改变发布路径

    关闭服务,删除里面的所有项目,clean,然后双击服务,发布路径修改就可以点击了.当重新发布了项目后,发布路径修改的按钮又会恢复不可点击状态.

  9. 外设:K9F2G08 nandflash 底层读写、控制驱动程序,可随机读写

    /****************************************************************************** Copyright (C), 2001- ...

  10. linux命令sysctl使用

    以前没有注意过这个命令,直到有次在单位安装greenplum的时候,在没有配置系统参数的情况下,出现了设备空间不足的报错信息. 当然,安装的不是我的本机,而是公用的服务器,编辑修改系统参数后,仍然出现 ...