应用kNN算法预测豆瓣电影用户的性别

摘要

本文认为不同性别的人偏好的电影类型会有所不同,因此进行了此实验。利用较为活跃的274位豆瓣用户最近观看的100部电影,对其类型进行统计,以得到的37种电影类型作为属性特征,以用户性别作为标签构建样本集。使用kNN算法构建豆瓣电影用户性别分类器,使用样本中的90%作为训练样本,10%作为测试样本,准确率可以达到81.48%。

实验数据

本次实验所用数据为豆瓣用户标记的看过的电影,选取了274位豆瓣用户最近看过的100部电影。对每个用户的电影类型进行统计。本次实验所用数据中共有37个电影类型,因此将这37个类型作为用户的属性特征,各特征的值即为用户100部电影中该类型电影的数量。用户的标签为其性别,由于豆瓣没有用户性别信息,因此均为人工标注。

数据格式如下所示:
X1,1,X1,2,X1,3,X1,4……X1,36,X1,37,Y1
X2,1,X2,2,X2,3,X2,4……X2,36,X2,37,Y2
…………
X274,1,X274,2,X274,3,X274,4……X274,36,X274,37,Y274

示例:
0,0,0,3,1,34,5,0,0,0,11,31,0,0,38,40,0,0,15,8,3,9,14,2,3,0,4,1,1,15,0,0,1,13,0,0,1,1 0,1,0,2,2,24,8,0,0,0,10,37,0,0,44,34,0,0,3,0,4,10,15,5,3,0,0,7,2,13,0,0,2,12,0,0,0,0

像这样的数据一共有274行,表示274个样本。每一个的前37个数据是该样本的37个特征值,最后一个数据为标签,即性别:0表示男性,1表示女性。

kNN算法

k-近邻算法(KNN),是最基本的分类算法,其基本思想是采用测量不同特征值之间的距离方法进行分类。

算法原理:存在一个样本数据集合(训练集),并且样本集中每个数据都存在标签(即每一数据与所属分类的关系已知)。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较(计算欧氏距离),然后提取样本集中特征最相似数据(最近邻)的分类标签。一般会取前k个最相似的数据,然后取k个最相似数据中出现次数最多的标签(分类)最后新数据的分类。

在此次试验中取样本的前10%作为测试样本,其余作为训练样本。

首先对所有数据归一化。对矩阵中的每一列求取最大值(max_j)、最小值(min_j),对矩阵中的数据X_j,
X_j=(X_j-min_j)/(max_j-min_j) 。

然后对于每一条测试样本,计算其与所有训练样本的欧氏距离。测试样本i与训练样本j之间的距离为:
distance_i_j=sqrt((Xi,1-Xj,1)^2+(Xi,2-Xj,2)^2+……+(Xi,37-Xj,37)^2) ,
对样本i的所有距离从小到大排序,在前k个中选择出现次数最多的标签,即为样本i的预测值。

实验结果

首先选择一个合适的k值。 对于k=1,3,5,7,均使用同一个测试样本和训练样本,测试其正确率,结果如下表所示。

表1 选取不同k值的正确率表

k 1 3 5 7
测试集1 62.96% 81.48% 70.37% 77.78%
测试集2 66.67% 66.67% 59.26% 62.96%
测试集3 62.96% 74.07% 70.37% 74.07%
平均值 64.20% 74.07% 66.67% 71.60%

由上述结果可知,在k=3时,测试的平均正确率最高,为74.07%,最高可以达到81.48%。

上述不同的测试集均来自同一样本集中,为随机选取所得。

Python代码

2016/03 更新:自己重新实现了一下kNN的代码,对上次的算法一小处(从k个近邻中选择频率最高的一项)做了简化。

from numpy import *

#打开数据文件,导出为矩阵,其中最后一列为类别
def fileToMatrix(filename, sep=','):
f = open(filename)
content = f.readlines()
f.close() first_line_list = content[0].strip().split(sep) data_matrix = zeros( (len(content), len(first_line_list)-1) )
label_vector = [] index = 0
for line in content:
list_from_line = line.strip().split(sep)
data_matrix[index,:] = list_from_line[0:-1]
label_vector.append(int(list_from_line[-1]))
index += 1 return (data_matrix,label_vector) def classify(inX, data_matrix, label_vector, k):
diff_matrix = inX - data_matrix
square_diff_matrix = diff_matrix ** 2
square_distances = square_diff_matrix.sum(axis=1) sorted_indicies = square_distances.argsort() label_count = {} for i in range(k):
cur_label = label_vector[ sorted_indicies[i] ]
label_count[cur_label] = label_count.get(cur_label, 0) + 1 max_count = 0
nearest_label = None
for label in label_count:
count = label_count[label]
if count > max_count:
max_count = count
nearest_label = label
return nearest_label def test(filename,k=3,sep=',',hold_ratio=0.3):
data_matrix, label_vector = fileToMatrix(filename,sep=sep) data_num = data_matrix.shape[0]
test_num = int(hold_ratio * data_num)
train_num = data_num - test_num train_matrix = data_matrix[0:train_num,:]
test_matrix = data_matrix[train_num:,:] train_label_vector = label_vector[0:train_num]
test_label_vector = label_vector[train_num:] right_count = 0
for i in range(test_num):
inX = test_matrix[i,:] classify_result = classify(inX, train_matrix, train_label_vector, k)
if classify_result == test_label_vector[i]:
right_count += 1
print(" The classifier came back with: %d, the real answer is: %d" % (classify_result, test_label_vector[i])) accuracy = float(right_count)/float(test_num)
print('The total accuracy is %f' % accuracy)

参考文献

(美)Peter Harrington;李锐,李鹏,曲亚东,王斌译者. 机器学习实战. 北京:人民邮电出版社, 2013.06.

[Python] 应用kNN算法预测豆瓣电影用户的性别的更多相关文章

  1. Python实现KNN算法

    Python实现Knn算法 关键词:KNN.K-近邻(KNN)算法.欧氏距离.曼哈顿距离  KNN是通过测量不同特征值之间的距离进行分类.它的的思路是:如果一个样本在特征空间中的k个最相似(即特征空间 ...

  2. Python实现KNN算法及手写程序识别

    1.Python实现KNN算法 输入:inX:与现有数据集(1xN)进行比较的向量   dataSet:已知向量的大小m数据集(NxM)   个标签:数据集标签(1xM矢量)   k:用于比较的邻居数 ...

  3. k-近邻(KNN) 算法预测签到位置

    分类算法-k近邻算法(KNN): 定义: 如果一个样本在特征空间中的k个最相似 (即特征空间中最邻近) 的样本中的大多数属于某一个类别,则该样本也属于这个类别 来源: KNN算法最早是由Cover和H ...

  4. Python小爬虫——抓取豆瓣电影Top250数据

    python抓取豆瓣电影Top250数据 1.豆瓣地址:https://movie.douban.com/top250?start=25&filter= 2.主要流程是抓取该网址下的Top25 ...

  5. ML一:python的KNN算法

    (1):list的排序算法: 参考链接:http://blog.csdn.net/horin153/article/details/7076321 示例: DisListSorted = sorted ...

  6. 利用Python实现kNN算法

    邻近算法(k-NearestNeighbor) 是机器学习中的一种分类(classification)算法,也是机器学习中最简单的算法之一了.虽然很简单,但在解决特定问题时却能发挥很好的效果.因此,学 ...

  7. 基于python 实现KNN 算法

    #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/11/7 14:50 # @Author : gylhaut # @Site ...

  8. python爬虫--用xpath爬豆瓣电影

    步骤 将目标网站下的页面抓取下来 将抓取下来的数据根据一定规则进行提取   具体流程 将目标网站下的页面抓取下来 1. 倒库 import requests 2.头信息(有时候可不写) headers ...

  9. 吴裕雄 python 机器学习-KNN算法(1)

    import numpy as np import operator as op from os import listdir def classify0(inX, dataSet, labels, ...

随机推荐

  1. Ubuntu修改计算机名称造成无法解析主机问题解决方法

    在通过修改/etc/hostname文件方法修改计算机名称后导致有时候出现无法解析主机的问题. 解决方法: 找到/etc/hosts文件,打开找到如下一行 127.0.1.1       旧主机名 将 ...

  2. linux学习笔记之线程

    线程同步机制:http://www.cnblogs.com/zheng39562/p/4270019.html 一.基础知识 1:基础知识. 1,线程需要的信息有:线程ID,寄存器,栈,调度优先级和策 ...

  3. 开发网站相关知识html和javascript

    1.html 布局 https://github.com/bramstein/jlayout/ http://welcome.totheinter.net/columnizer-jquery-plug ...

  4. MySql5压缩包安装

    一. 解压所有文件到一个目录:例如D:\Program Files\mysql-5.6.22-winx64 二. 配置系统的环境变量:在Path路径后追加:;D:\Program Files\mysq ...

  5. PHP获取生成一个页面的数据库查询次数(转)

    很多博客软件都有这么一个功能,比如“生成本次页面一共花费了xx毫秒,进行了xx次数据库查询”等等.那么这个功能是如何实现的呢,下面我大概说下思路. 1. 在类的构造函数中声明全局变量 定义一个全局变量 ...

  6. ubuntu中vim找不到配色方案blackboard

    在ubuntu下启动vim,提示找不到配色方案blackboard(或其他的), 如何挑选自己喜欢的配色方案呢?在/usr/share/vim/vim72/colors中,(这里根据自己的vim版本选 ...

  7. EasyUI 使用心得

    最近项目中用到EasyUI,总结了一下 注:EasyUI中所有的控件不能重名,否则会出现意向不到的后果.这是EasyUI框架决定的. ① EasyUI 获取文本框中的值 //日期 $('#beginD ...

  8. inet address example(socket)

    package com.opensource.socket; import java.net.Inet4Address; import java.net.Inet6Address; import ja ...

  9. cf459A Pashmak and Garden

    A. Pashmak and Garden time limit per test 1 second memory limit per test 256 megabytes input standar ...

  10. OSCHina技术导向:开源企业ERP系统Opentaps

    opentaps Open Source ERP + CRM 基于 Apache OFBiz (The Open For Business Project ) 构建, 是一款设计良好, 逐渐流行起来的 ...