Teach Yourself Scheme in Fixnum Days 6 recursion递归
A procedure body can contain calls to other procedures, not least itself:
(define factorial
(lambda (n)
(if (= n 0) 1
(* n (factorial (- n 1))))))
This recursive procedure calculates the factorial of a number. If the number is 0
, the answer is 1
. For any other number n
, the procedure uses itself to calculate the factorial of n ‑ 1
, multiplies that subresult by n
, and returns the product.
Mutually recursive procedures are also possible. The following predicates for evenness and oddness use each other:
相互递归:
(define is-even?
(lambda (n)
(if (= n 0) #t
(is-odd? (- n 1))))) (define is-odd?
(lambda (n)
(if (= n 0) #f
(is-even? (- n 1)))))
These definitions are offered here only as simple illustrations of mutual recursion. Scheme already provides the primitive predicates even?
and odd?
.
6.1 letrec
If we wanted the above procedures as local variables, we could try to use alet
form:
(let ((local-even? (lambda (n)
(if (= n 0) #t
(local-odd? (- n 1)))))
(local-odd? (lambda (n)
(if (= n 0) #f
(local-even? (- n 1))))))
(list (local-even? 23) (local-odd? 23)))
This won’t quite work, because the occurrences of local‑even?
and local‑odd?
in the initializations don’t refer to the lexical variables themselves. Changing the let
to a let*
won’t work either, for while the local‑even?
inside local‑odd?
’s body refers to the correct procedure value, thelocal‑odd?
in local‑even?
’s body still points elsewhere.
To solve problems like this, Scheme provides the form letrec
:
(letrec ((local-even? (lambda (n)
(if (= n 0) #t
(local-odd? (- n 1)))))
(local-odd? (lambda (n)
(if (= n 0) #f
(local-even? (- n 1))))))
(list (local-even? 23) (local-odd? 23)))
The lexical variables introduced by a letrec
are visible not only in theletrec
-body but also within all the initializations. letrec
is thus tailor-made for defining recursive and mutually recursive local procedures.
letrec专门用来定义为定义递归和相互递归的局部过程使用。
6.2 Named let
A recursive procedure defined using letrec
can describe loops. Let’s say we want to display a countdown from 10
:
(letrec ((countdown (lambda (i)
(if (= i 0) 'liftoff
(begin
(display i)
(newline)
(countdown (- i 1)))))))
(countdown 10))
This outputs on the console the numbers 10
down to 1
, and returns the result liftoff
.
Scheme allows a variant of let
called named let
to write this kind of loop more compactly:
scheme有一个named let可以让let有一个名字。
(let countdown ((i 10))
(if (= i 0) 'liftoff
(begin
(display i)
(newline)
(countdown (- i 1)))))
Note the presence of a variable identifying the loop immediately after thelet
. This program is equivalent to the one written with letrec
. You may consider the named let
to be a macro (chap 8) expanding to the letrec
form.
现在变量名countdown立即表示了整个loop,等价于上面用letrec的。
6.3 Iteration
countdown
defined above is really a recursive procedure. Scheme can define loops only through recursion. There are no special looping or iteration constructs.
schemem只能通过递归来定义循环,没有loop或其他的循环购置。
Nevertheless, the loop as defined above is a genuine loop, in exactly the same way that other languages bill their loops. Ie, Scheme takes special care to ensure that recursion of the type used above will not generate the procedure call/return overhead.
Scheme does this by a process called tail-call elimination. If you look closely at the countdown
procedure, you will note that when the recursive call occurs in countdown
’s body, it is the tail call, or the very last thing done — each invocation of countdown
either does not call itself, or when it does, it does so as its very last act. To a Scheme implementation, this makes the recursion indistinguishable from iteration. So go ahead, use recursion to write loops. It’s safe.
Here’s another example of a useful tail-recursive procedure:
(define list-position
(lambda (o l)
(let loop ((i ) (l l))
(if (null? l) #f
(if (eqv? (car l) o) i
(loop (+ i ) (cdr l)))))))
list‑position
finds the index of the first occurrence of the object o
in the list l
. If the object is not found in the list, the procedure returns #f
. list-position找出list表l中对象o第一次出现的位置。
Here’s yet another tail-recursive procedure, one that reverses its argument list “in place”, ie, by mutating the contents of the existing list, and without allocating a new one:
通过改变(mutate)存在的list,不用分配内存:
(define reverse!
(lambda (s)
(let loop ((s s) (r '()))
(if (null? s) r
(let ((d (cdr s)))
(set-cdr! s r)
(loop d s))))))
(reverse!
is a useful enough procedure that it is provided primitively in many Scheme dialects, eg, MzScheme and Guile.)
For some numerical examples of recursion (including iteration), see Appendix C.
1
2
3
4
5
6
7
8
9
10
11
12
|
scheme@(guile-user) > (define list - reverse ... ( lambda (ls) ... ( let loop ((ls ls) (xs '())) ... ( if (null? ls) ... xs ... ( loop ( cdr ls) ... (cons ( car ls) xs)))))) scheme@(guile-user) > (define ls '(1 2 3 4)) scheme@(guile-user) > ( list - reverse ls) (4 3 2 1) scheme@(guile-user) > ls (1 2 3 4) |
6.4 Mapping a procedure across a list
A special kind of iteration involves repeating the same action for each element of a list. Scheme offers two procedures for this situation: map
andfor‑each
.
The map
procedure applies a given procedure to every element of a given list, and returns the list of the results. Eg,
(map add2 '(1 2 3))
=> (3 4 5)
The for‑each
procedure also applies a procedure to each element in a list, but returns void. The procedure application is done purely for any side-effects it may cause. Eg,
for-each 函数主要是为了得到函数的副作用:
(for-each display
(list 1 2 3))
输出:1 2 3
如果用map会输出:
123(#<void> #<void> #<void>) (Racket下)
has the side-effect of displaying the strings (in the order they appear) on the console.
The procedures applied by map
and for‑each
need not be one-argument procedures. For example, given an n
-argument procedure, map
takes n
lists and applies the procedure to every set of n
of arguments selected from across the lists. Eg,
map和for-each的存储过程参数不必是一个参数的存储过程,可以是n个。
(map cons '(1 2 3) '(10 20 30))
=> ((1 . 10) (2 . 20) (3 . 30)) (map + '(1 2 3) '(10 20 30))
=> (11 22 33)
参考:http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-8.html
http://lispor.is-programmer.com/posts/23255.html
Teach Yourself Scheme in Fixnum Days 6 recursion递归的更多相关文章
- Teach Yourself Scheme in Fixnum Days 13 Jump跳转
Jumps One of the signal features of Scheme is its support for jumps or nonlocal control. Specificall ...
- recursion 递归以及递归的缺点
递归定义的算法有两部分: 递归基:直接定义最简单情况下的函数值: 递归步:通过较为简单情况下的函数值定义一般情况下的函数值. 应用条件与准则: (1)问题具有某种可借用的类同自身的子问题描述的性质: ...
- string formating字符串格式化,function函数,group组,recursion递归,练习
# -*- coding: UTF-8 -*- msg = 'i am {} my hobby is {}'.format('lhf',18) print(msg) msg1 = 'i am %s m ...
- Recursion递归
/*java.lang 核心包 如 String Math Integer System Thread等 拿来直接用 * java.awt 窗口工具 GUI * java.net 网络包 * java ...
- Github上的1000多本免费电子书重磅来袭!
Github上的1000多本免费电子书重磅来袭! 以前 StackOverFlow 也给出了一个免费电子书列表,现在在Github上可以看到时刻保持更新的列表了. 瞥一眼下面的书籍分类目录,你就能 ...
- Github 的一个免费编程书籍列表
Index Ada Agda Alef Android APL Arduino ASP.NET MVC Assembly Language Non-X86 AutoHotkey Autotools A ...
- Lisp语言学习的书
Scheme <How to Design Programs : An Introduction to Programming and Computing>(<程序设计方法>) ...
- racket学习-call/cc (let/cc)
Drracket continuation 文中使用let/cc代替call/cc Racket文档中,let/cc说明为: (let/cc k body ...+) Equivalent to (c ...
- 开始学习Scheme
开始学习Scheme 函数式编程(Functional Programming)是在MIT研究人工智能(Artificial Intelligence)时发明的,其编程语言为Lisp.确切地说,L ...
随机推荐
- C++ deepin
访问类成员函数(cin.getline())方式是从访问结构成员变量方式衍生而来; C++结构体变量申明 struct关键字可省略; c++结构体变量声明初始化, = 可省略;但此需用在c++,大家都 ...
- 【KMP】Number Sequence
KMP算法 KMP的基处题目,数字数组的KMP算法应用. 主要是next[]数组的构造,next[]存储的是字符的当前字串,与子串前字符匹配的字符数. 移动位数 = 已匹配的字符数 - 对应的部分匹配 ...
- linux loadavg详解(top cpu load)
目录 [隐藏] 1 Loadavg分析 1.1 Loadavg浅述 1.2 Loadavg读取 1.3 Loadavg和进程之间的关系 1.4 Loadavg采样 2 18内核计算loadavg存在的 ...
- JS-事件处理
1.一个简单的单击事件: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> ...
- selenium page object model
Page Object Model (POM) & Page Factory in Selenium: Ultimate Guide 来源:http://www.guru99.com/page ...
- 常用JS模板
var _win, _doc, _stt, _do = document.domain, _arr = _do.split("."); function _st() { try { ...
- phpstorm + xdebug 配置
PHPSTORM版本 : 8.0.1 PHP版本 : 5.6.2 把php-xdebug.dll复制到xamapp/php/ext目录下,打开php.ini配置如下参数 [xdebug] zend_e ...
- lession2:使用HTTP Cookie 管理器来传递cookies值
在实际进行压力测试的时候,经常会出现使用cookie传递值的情况,此时就需要使用[HTTP Cookie 管理器]来传递cookie值. 1.参照lession1中,创建线程组.sampler及聚合报 ...
- 带有中文的url和NSString中文的转换
NSString *url = @"http://tw.news.yahoo.com/麵包魂東京吸睛-粉絲包圍導演-061222049.html"; NSLog(@"ur ...
- android .9.png ”点九” 图片制作方法
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png 智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向, ...