import numpy as np

def loadDataSet():
dataMat = []
labelMat = []
fr = open('D:\\LearningResource\\machinelearninginaction\\Ch05\\testSet.txt')
for line in fr.readlines():
lineArr = line.strip().split()
dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
labelMat.append(int(lineArr[2]))
return dataMat,labelMat dataMat,labelMat = loadDataSet()
print(dataMat)
print(labelMat)

def sigmoid(z):
sigmoid = 1.0/(1+np.exp(-z))
return sigmoid def gradAscent(dataMatIn, classLabels):
dataMatrix = np.mat(dataMatIn)
labelMat = np.mat(classLabels).transpose()
m,n = np.shape(dataMatrix)
alpha = 0.001
maxCycles = 500
weights = np.ones((n,1))
for k in range(maxCycles):
h = sigmoid(dataMatrix*weights)
error = (labelMat - h)
weights = weights + alpha * dataMatrix.transpose()* error
return weights weights = gradAscent(dataMat,labelMat)
print(weights)

def stocGradAscent0(dataMatrix, classLabels):
m,n = np.shape(dataMatrix)
alpha = 0.01
weights = np.ones(n)
for i in range(m):
h = sigmoid(sum(np.array(dataMatrix[i])*weights))
error = classLabels[i] - h
weights = weights + alpha * error * np.array(dataMatrix[i])
return weights weights = stocGradAscent0(dataMat,labelMat)
print(weights)

def stocGradAscent1(dataMatrix, classLabels, numIter=150):
m,n = np.shape(dataMatrix)
weights = np.ones(n)
for j in range(numIter):
dataIndex = list(range(m))
for i in range(m):
alpha = 4/(1.0+j+i)+0.0001
randIndex = int(np.random.uniform(0,len(dataIndex)))
h = sigmoid(sum(np.array(dataMatrix[randIndex])*weights))
error = classLabels[randIndex] - h
weights = weights + alpha * error * np.array(dataMatrix[randIndex])
del(dataIndex[randIndex])
return weights weights = stocGradAscent1(dataMat,labelMat)
print(weights)

import matplotlib.pyplot as plt

def plotBestFit():
dataMat,labelMat=loadDataSet()
weights = gradAscent(dataMat,labelMat)
dataArr = np.array(dataMat)
n = np.shape(dataArr)[0]
xcord1 = []
ycord1 = []
xcord2 = []
ycord2 = []
for i in range(n):
if(int(labelMat[i])== 1):
xcord1.append(dataArr[i,1])
ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1])
ycord2.append(dataArr[i,2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
ax.scatter(xcord2, ycord2, s=30, c='green')
x = np.arange(-3.0, 3.0, 0.1)
y = (-weights[0]-weights[1]*x)/weights[2]
y = np.array(y).reshape(len(x))
ax.plot(x, y)
plt.xlabel('X1')
plt.ylabel('X2');
plt.show() plotBestFit()

def classifyVector(z, weights):
prob = sigmoid(sum(z*weights))
if(prob > 0.5):
return 1.0
else:
return 0.0 def colicTest():
frTrain = open('D:\\LearningResource\\machinelearninginaction\\Ch05\\horseColicTraining.txt')
frTest = open('D:\\LearningResource\\machinelearninginaction\\Ch05\\horseColicTest.txt')
trainingSet = []
trainingLabels = []
for line in frTrain.readlines():
currLine = line.strip().split('\t')
lineArr =[]
for i in range(21):
lineArr.append(float(currLine[i]))
trainingSet.append(lineArr)
trainingLabels.append(float(currLine[21]))
trainWeights = stocGradAscent1(np.array(trainingSet), trainingLabels, 1000)
errorCount = 0
numTestVec = 0.0
for line in frTest.readlines():
numTestVec += 1.0
currLine = line.strip().split('\t')
lineArr =[]
for i in range(21):
lineArr.append(float(currLine[i]))
if(int(classifyVector(np.array(lineArr), trainWeights))!= int(currLine[21])):
errorCount += 1
errorRate = (float(errorCount)/numTestVec)
print("the error rate of this test is: %f" % errorRate)
return errorRate errorRate = colicTest()
print(errorRate) def multiTest():
numTests = 10
errorSum=0.0
for k in range(numTests):
errorSum += colicTest()
print("after %d iterations the average error rate is: %f" % (numTests, errorSum/float(numTests))) multiTest()

吴裕雄 python 机器学习-Logistic(1)的更多相关文章

  1. 吴裕雄 python 机器学习——人工神经网络感知机学习算法的应用

    import numpy as np from matplotlib import pyplot as plt from sklearn import neighbors, datasets from ...

  2. 吴裕雄 python 机器学习——分类决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

  3. 吴裕雄 python 机器学习——回归决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

  4. 吴裕雄 python 机器学习——线性判断分析LinearDiscriminantAnalysis

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  5. 吴裕雄 python 机器学习——逻辑回归

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  6. 吴裕雄 python 机器学习——ElasticNet回归

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  7. 吴裕雄 python 机器学习——Lasso回归

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...

  8. 吴裕雄 python 机器学习——岭回归

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...

  9. 吴裕雄 python 机器学习——线性回归模型

    import numpy as np from sklearn import datasets,linear_model from sklearn.model_selection import tra ...

随机推荐

  1. KVM总结-KVM性能优化之内存优化

    我们说完CPU方面的优化(http://blog.csdn.net/dylloveyou/article/details/71169463),接着继续第二块内容,也就是内存方面的优化.内存方面有以下四 ...

  2. CF865D Buy Low Sell High

    /* 贪心来选择, 如果能找到比当前小的, 就用最小的来更新当前的 优先队列即可 */ #include<cstdio> #include<algorithm> #includ ...

  3. python函数的创建和函数参数

    [1]#函数的作用:1.减少重复代码 2.方便修改,更容易扩展3.保持代码的一致性 [2]#函数简单的定义规则: 函数代码块以def关键词开头,后接函数标识符名称和圆括号(),任何传入参数和自变量必须 ...

  4. 由echarts想到的js中的时间类型

    在工作中使用echarts时,偶然发现折线图中对时间类型变量的用法: now前面的+号何解? now = new Date(+now + oneDay); 后来查阅资料,看到一篇博客,解释如下:这是对 ...

  5. slenium使用鼠标+键盘事件或者双击实现代码

    参考文章: https://www.ibm.com/developerworks/cn/java/j-lo-keyboard/

  6. spring mvc 跨域问题。。。解决

    官方推荐方式: http://spring.io/blog/2015/06/08/cors-support-in-spring-framework 方式1: $.ajax({ //前台:常规写法.注意 ...

  7. 系列:这一件月薪30K+的事,我们一起来撮合一下 3

    作者:接地气的陈老师 ----------------------------------------------------------------------------------------- ...

  8. Maven项目指定JDK版本

    <build> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> ...

  9. 解决idea启动项目报错:Unable to open debugger port(127.0.0.1:60157):java.net.SocketException"socket closed

    原因分析: 1.可能是端口被占用导致,其他软件占用了tomcat的端口. 2.可能是在打开Tomcat的情况下关闭了Eclipse.idea等开发工具,或是Eclipse.idea非正常关闭(如电脑. ...

  10. mysql 日期时间运算函数

    时期时间函数 DAYOFWEEK(date) 返回日期date是星期几(1=星期天,2=星期一,……7=星期六,ODBC标准)mysql> select DAYOFWEEK('1998-02-0 ...