吴裕雄 python 机器学习-Logistic(1)
import numpy as np def loadDataSet():
dataMat = []
labelMat = []
fr = open('D:\\LearningResource\\machinelearninginaction\\Ch05\\testSet.txt')
for line in fr.readlines():
lineArr = line.strip().split()
dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
labelMat.append(int(lineArr[2]))
return dataMat,labelMat dataMat,labelMat = loadDataSet()
print(dataMat)
print(labelMat)
def sigmoid(z):
sigmoid = 1.0/(1+np.exp(-z))
return sigmoid def gradAscent(dataMatIn, classLabels):
dataMatrix = np.mat(dataMatIn)
labelMat = np.mat(classLabels).transpose()
m,n = np.shape(dataMatrix)
alpha = 0.001
maxCycles = 500
weights = np.ones((n,1))
for k in range(maxCycles):
h = sigmoid(dataMatrix*weights)
error = (labelMat - h)
weights = weights + alpha * dataMatrix.transpose()* error
return weights weights = gradAscent(dataMat,labelMat)
print(weights)
def stocGradAscent0(dataMatrix, classLabels):
m,n = np.shape(dataMatrix)
alpha = 0.01
weights = np.ones(n)
for i in range(m):
h = sigmoid(sum(np.array(dataMatrix[i])*weights))
error = classLabels[i] - h
weights = weights + alpha * error * np.array(dataMatrix[i])
return weights weights = stocGradAscent0(dataMat,labelMat)
print(weights)
def stocGradAscent1(dataMatrix, classLabels, numIter=150):
m,n = np.shape(dataMatrix)
weights = np.ones(n)
for j in range(numIter):
dataIndex = list(range(m))
for i in range(m):
alpha = 4/(1.0+j+i)+0.0001
randIndex = int(np.random.uniform(0,len(dataIndex)))
h = sigmoid(sum(np.array(dataMatrix[randIndex])*weights))
error = classLabels[randIndex] - h
weights = weights + alpha * error * np.array(dataMatrix[randIndex])
del(dataIndex[randIndex])
return weights weights = stocGradAscent1(dataMat,labelMat)
print(weights)
import matplotlib.pyplot as plt def plotBestFit():
dataMat,labelMat=loadDataSet()
weights = gradAscent(dataMat,labelMat)
dataArr = np.array(dataMat)
n = np.shape(dataArr)[0]
xcord1 = []
ycord1 = []
xcord2 = []
ycord2 = []
for i in range(n):
if(int(labelMat[i])== 1):
xcord1.append(dataArr[i,1])
ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1])
ycord2.append(dataArr[i,2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
ax.scatter(xcord2, ycord2, s=30, c='green')
x = np.arange(-3.0, 3.0, 0.1)
y = (-weights[0]-weights[1]*x)/weights[2]
y = np.array(y).reshape(len(x))
ax.plot(x, y)
plt.xlabel('X1')
plt.ylabel('X2');
plt.show() plotBestFit()
def classifyVector(z, weights):
prob = sigmoid(sum(z*weights))
if(prob > 0.5):
return 1.0
else:
return 0.0 def colicTest():
frTrain = open('D:\\LearningResource\\machinelearninginaction\\Ch05\\horseColicTraining.txt')
frTest = open('D:\\LearningResource\\machinelearninginaction\\Ch05\\horseColicTest.txt')
trainingSet = []
trainingLabels = []
for line in frTrain.readlines():
currLine = line.strip().split('\t')
lineArr =[]
for i in range(21):
lineArr.append(float(currLine[i]))
trainingSet.append(lineArr)
trainingLabels.append(float(currLine[21]))
trainWeights = stocGradAscent1(np.array(trainingSet), trainingLabels, 1000)
errorCount = 0
numTestVec = 0.0
for line in frTest.readlines():
numTestVec += 1.0
currLine = line.strip().split('\t')
lineArr =[]
for i in range(21):
lineArr.append(float(currLine[i]))
if(int(classifyVector(np.array(lineArr), trainWeights))!= int(currLine[21])):
errorCount += 1
errorRate = (float(errorCount)/numTestVec)
print("the error rate of this test is: %f" % errorRate)
return errorRate errorRate = colicTest()
print(errorRate) def multiTest():
numTests = 10
errorSum=0.0
for k in range(numTests):
errorSum += colicTest()
print("after %d iterations the average error rate is: %f" % (numTests, errorSum/float(numTests))) multiTest()
吴裕雄 python 机器学习-Logistic(1)的更多相关文章
- 吴裕雄 python 机器学习——人工神经网络感知机学习算法的应用
import numpy as np from matplotlib import pyplot as plt from sklearn import neighbors, datasets from ...
- 吴裕雄 python 机器学习——分类决策树模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...
- 吴裕雄 python 机器学习——回归决策树模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...
- 吴裕雄 python 机器学习——线性判断分析LinearDiscriminantAnalysis
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...
- 吴裕雄 python 机器学习——逻辑回归
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...
- 吴裕雄 python 机器学习——ElasticNet回归
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...
- 吴裕雄 python 机器学习——Lasso回归
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...
- 吴裕雄 python 机器学习——岭回归
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...
- 吴裕雄 python 机器学习——线性回归模型
import numpy as np from sklearn import datasets,linear_model from sklearn.model_selection import tra ...
随机推荐
- KVM总结-KVM性能优化之内存优化
我们说完CPU方面的优化(http://blog.csdn.net/dylloveyou/article/details/71169463),接着继续第二块内容,也就是内存方面的优化.内存方面有以下四 ...
- CF865D Buy Low Sell High
/* 贪心来选择, 如果能找到比当前小的, 就用最小的来更新当前的 优先队列即可 */ #include<cstdio> #include<algorithm> #includ ...
- python函数的创建和函数参数
[1]#函数的作用:1.减少重复代码 2.方便修改,更容易扩展3.保持代码的一致性 [2]#函数简单的定义规则: 函数代码块以def关键词开头,后接函数标识符名称和圆括号(),任何传入参数和自变量必须 ...
- 由echarts想到的js中的时间类型
在工作中使用echarts时,偶然发现折线图中对时间类型变量的用法: now前面的+号何解? now = new Date(+now + oneDay); 后来查阅资料,看到一篇博客,解释如下:这是对 ...
- slenium使用鼠标+键盘事件或者双击实现代码
参考文章: https://www.ibm.com/developerworks/cn/java/j-lo-keyboard/
- spring mvc 跨域问题。。。解决
官方推荐方式: http://spring.io/blog/2015/06/08/cors-support-in-spring-framework 方式1: $.ajax({ //前台:常规写法.注意 ...
- 系列:这一件月薪30K+的事,我们一起来撮合一下 3
作者:接地气的陈老师 ----------------------------------------------------------------------------------------- ...
- Maven项目指定JDK版本
<build> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> ...
- 解决idea启动项目报错:Unable to open debugger port(127.0.0.1:60157):java.net.SocketException"socket closed
原因分析: 1.可能是端口被占用导致,其他软件占用了tomcat的端口. 2.可能是在打开Tomcat的情况下关闭了Eclipse.idea等开发工具,或是Eclipse.idea非正常关闭(如电脑. ...
- mysql 日期时间运算函数
时期时间函数 DAYOFWEEK(date) 返回日期date是星期几(1=星期天,2=星期一,……7=星期六,ODBC标准)mysql> select DAYOFWEEK('1998-02-0 ...