在分析虚拟内存管理前要先看下linux内核内存的具体分配我開始就是困在这个地方。对内核内存的分类不是非常清晰。我摘录当中的一段:

内核内存地址

===========================================================================================================

在linux的内存管理中,用户使用0~3GB的地址空间。而内核仅仅是用了3GB~4GB区间的地址空间。共1GB。非连

续空间的物理映射就位于3GB~4GB之间。例如以下图示



0GB                                                          3GB                   4GB

而关于内核空间中这1GB是怎样分配的呢,详细请看下图:



一般会把内核空间中大于896M的空间称作内核空间中的高端内存。内核能够用三种不同的机制将页框映射到高端

内存:永久内核映射、暂时内核映射和非连续内存分配。本文中将要谈论的是非连续内存分配。

       从上图能够知道,在物理内存的末尾和非连续内存区之间插入了一个大小为8MB的区间,这是一个安全区,

目的是“捕获”对非连续区的非法訪问。出于相同的理由。在其他非连续区间也插入了大小为4KB的安全区。而每一个

非连续区的大小都是4KB的倍数。例如以下图:



非连续内存的线性地址空间是从VMALLOC_START~VMALLOC_END,共128MB大小。

当内核须要用vmalloc类的函数

进行非连续内存分配时,就会申请一个vm_struct结构来描写叙述相应的vmalloc区,若分配多个vmalloc的内存区,那

么相邻两个vmalloc区之间的间隔大小至少为4KB,即至少是一个页框大小PAGE——SIZE。如上图。

===============================================================================================================

这里强调下:上面的图示表示的不过虚拟地址,而实际的物理地址是分DMA和常规地址及高端地址的;

linux内核内存大概的就是上面的图示了。当中8MB说是为了安全。防止越界訪问(看了非常多书,都这么说),就是这8MB虚拟地址不做不论什么映射(这样不过虚拟地址。没有实际的物理地址浪费)

由上面的图示能够知道,前面896MB(其它架构能够能不是以896MB切割的)就是我们说的内核逻辑地址(记住是内核逻辑地址。假设就说逻辑地址的话应该是指x86架构中虚拟地址中不包含段地址部分,也就是段内偏移部分);这部分内存地址已经在系统初始化的时候和物理页做好了映射,并且是一一映射,我们一般使用的时候就是用该部分的内存地址(kmalloc函数使用就是该部分)。这段内存是很高效的,由于不须要做其它的映射和改动页表就能够直接使用。本blog是分析下虚拟内存地址的映射,主要是vmalloc函数和ioremap函数;

vmalloc函数

vmalloc函数是驱动模块常常使用的内存分配函数。该函数返回的虚拟地址连续的(事实上这也有疑问。由于上面vmalloc的虚拟地址区有4k切割地址,假设vmalloc分配的虚拟地址非常大。那么中间是否有4kb的切割地址?),可是不保证所映射的物理地址也是连续的。

它主要对上面的vmalloc_start到vmalloc_end这段内存操作,返回的虚拟地址就是这一部分的。

在大多数情况下,不鼓舞使用vmalloc来申请内存,原因: 1、通过vmalloc函数获取的内存使用效率不高(由于要自己做映射,要推断哪些是空暇页等操作)。2、有些架构上给vmalloc使用的内存地址很小。对vmalloc调用可能会由于没有空暇地址而失败;3、不能保证物理地址是连续的,对一些驱动程序来说这是硬伤;综上所述。最好不要用包括vmalloc的代码作为内核的主线代码。

以下大概来说下vmalloc函数的原型:

void *vmalloc(unsigned long size);

该函数的实现有3个步骤:1、在vmalloc区域分配一段连续的虚拟内存地址;2、通过伙伴系统获取物理页;3、通过对页表的操作。把1中获取到的虚拟地址映射到2中分配到物理页上;

注意:

1、上面的图示我们能够看出每一个vmalloc虚拟地址之间都有4kb的切割区域(其作用就是防止越界。形成一个空洞,越界时产生异常),所以vmalloc函数实现时,会在size对齐后再添加4kb大小(一个页的大小)。

2、在分配物理页时,会从高端地址(上面的图示表示的不过虚拟地址而已,物理内存分配能够看linux内核内存分配(一、基本概念)中物理页和虚拟地址的映射图)分配。gfp为:GFB_KERNEL | _GFP_HIGHMEM;表示该函数可能睡眠,分配的物理地址来自高端物理页。

常规物理页给kmalloc使用;vmalloc函数分配高端物理页时使用alloc_page函数或者alloc_pages_node函数来分配一个整页,多次调用分配函数来完毕全部的物理页的分配,这样就不能保证全部的物理页一定连续了。

3、对虚拟地址映射时不会对额外的4k的切割地址进行映射,第2步中也不会对这4k的虚拟切割地址进行分配映射的物理页。

以下是vmalloc的映射图。图来自《深入linux设备驱动程序内核机制》

上图中:从vmalloc区域分配的两个虚拟页地址映射到物理地址的高端页面。当中高端内存是不连续的,虚拟地址最后一个页没有进行映射,那就是额外的4k切割页面。

用vmalloc分配得到的地址是不能在微处理器之外使用的。由于它们仅仅在处理器的内存管理单元上才有意义。

使用vmalloc函数的正确场合是在分配一大块连续的、仅仅在软件中存在的、用于缓冲的内存区域的时候。

ioremap函数

函数原型:void __iomem  *ioremap(unsigned long phys_addr,  size_t  size);此处的__iomem仅仅是标识返回的地址是io类型的地址;该函数用来把vmalloc区域之间的内存映射到设备I/O地址空间,这个函数和vmalloc函数的实现很相似,不同的地方就是vmalloc是通过伙伴系统分配到物理页。而ioremap函数却是利用设备的I/O空间,而不是系统物理页;至于其它操作能够看:訪问I/O内存和I/Oport设备

ioremap函数很多其它用于映射(物理的)PCI缓冲区地址到(虚拟的)内核空间。ioremap函数映射的内存须要用iounmap函数来释放;

vmalloc和kmalloc比較

kmalloc函数:

1、得到的内存保留上次使用的数据,不正确申请到的内存进行初始化(zmalloc函数会初始化申请到的内存)。

2、返回的逻辑地址(事实上也是虚拟地址)和映射的物理页都是连续的。调用该函数时可能会休眠;

3、kmalloc函数和__get_free_pages函数返回的内存地址都是虚拟地址,事实上际的物理地址须要通过MMU转换后得到(事实上MMU就是通过页表机制来转换的)。

4、kmalloc函数和__get_free_pages函数使用的虚拟地址范围与物理内存是一一相应的,可能有个常量偏移。这两个函数不须要改动页表。

5、kmalloc函数申请的内存大小是有限制的,一般依据架构决定;

vmalloc函数和ioremap函数:

1、使用效率不高,物理页不保证连续,虚拟地址保证连续。

2、vmalloc函数和ioremap函数使用的地址范围全然是虚拟的。每次分配都要通过对页表的操作来建立映射关系;

3、vmalloc函数一般用来分配大块的内存。而且返回的地址不能在微处理器之外使用;

转载地址:http://blog.csdn.net/yuzhihui_no1/article/details/47429411

linux内核内存分配(三、虚拟内存管理)的更多相关文章

  1. linux内核内存分配(一、基本概念)

    内存分配是Linux比较复杂也是比较重要的部分,这个和ssd驱动很类似:物理地址和虚拟地址的映射关系.下面总结下最近看到的有关内存分配的内容和自己的理解: 1.一致内存访问和非一致内存访问 上图来自& ...

  2. Linux内核分析(三)----初识linux内存管理子系统

    原文:Linux内核分析(三)----初识linux内存管理子系统 Linux内核分析(三) 昨天我们对内核模块进行了简单的分析,今天为了让我们今后的分析没有太多障碍,我们今天先简单的分析一下linu ...

  3. 十天学Linux内核之第三天---内存管理方式

    原文:十天学Linux内核之第三天---内存管理方式 昨天分析的进程的代码让自己还在头昏目眩,脑子中这几天都是关于Linux内核的,对于自己出现的一些问题我会继续改正,希望和大家好好分享,共同进步.今 ...

  4. linux内核--内存管理(二)

    一.进程与内存     所有进程(执行的程序)都必须占用一定数量的内存,它或是用来存放从磁盘载入的程序代码,或是存放取自用户输入的数据等等.不过进程对这些内存的管理方式因内存用途不一而不尽相同,有些内 ...

  5. Linux内核内存管理算法Buddy和Slab: /proc/meminfo、/proc/buddyinfo、/proc/slabinfo

    slabtop cat /proc/slabinfo # name <active_objs> <num_objs> <objsize> <objpersla ...

  6. LINUX内核内存屏障

    =================                          LINUX内核内存屏障                          ================= By ...

  7. Linux内核设计第三周——构造一个简单的Linux系统

    Linux内核设计第三周 ——构造一个简单的Linux系统 一.知识点总结 计算机三个法宝: 存储程序计算机 函数调用堆栈 中断 操作系统两把宝剑: 中断上下文的切换 进程上下文的切换 linux内核 ...

  8. linux内核分析第三周

    20135103王海宁 linux内核分析第三周 http://mooc.study.163.com/course/USTC-1000029000  按照课堂提供的方法,命令行一行行敲上去,我是手机缓 ...

  9. 20135327郭皓--Linux内核分析第三周 构造一个简单的Linux系统MenuOS

    Linux内核分析第三周  构造一个简单的Linux系统MenuOS 前提回顾 1.计算机是如何工作的三个法宝 1.存储程序计算机 2.函数调用堆栈 3.中断 2.操作系统的两把宝剑 中断上下文的切换 ...

随机推荐

  1. BZOJ5287 HNOI2018毒瘤(虚树+树形dp)

    显然的做法是暴力枚举非树边所连接两点的选或不选,大力dp.考场上写的是最暴力的O(3n-mn),成功比大众分少10分.容斥或者注意到某些枚举是不必要的就能让底数变成2.但暴力的极限也就到此为止. 每次 ...

  2. linux服务器mysql数据库新建数据库并配置数据库用户

    第一步:进入数据库 mysql -uroot -p 提示输入密码,输入你的root用户密码(默认不显示) 如下图: 第二步:创建一个数据库 create database 数据库名称 ;(注意分号结尾 ...

  3. Django_博客_XSS 攻击防范

    背景: 博客项目中用户后台添加文章时,若通过富文本编辑器输入 标签内容或者 js 指令会导致文章排版错乱,甚至进行XSS攻击 攻击现象: 文本内容输入 js 指令 文章描述时正确显示其文本内容 但在打 ...

  4. MT【125】四点共圆

    (2017湖南省高中数学竞赛16题) \(AB\)是椭圆\(mx^2+ny^2=1(m>0,n>0,m\ne n)\)的斜率为 1 的弦.\(AB\)的垂直平分线与椭圆交于两点\(CD\) ...

  5. 获取androdmanifest里面的meta-data

    /* * Copyright 2017 JessYan * * Licensed under the Apache License, Version 2.0 (the "License&qu ...

  6. os.chmod()--更改目录授权权限

    用法:os.chmod() 方法用于更改文件或目录的权限. 语法:os.chmod(path, mode) 参数:只需要2个参数,一个是路径,一个是说明路径的模式. path -- 文件名路径或目录路 ...

  7. SQL记录-PLSQL变量与常量文字

    PL/SQL变量   变量是只不过是一个给定的存储区域,程序可以操纵的名称.PL/SQL每个变量具有一个特定的数据类型,它决定了大小和变量的存储器的值,可以说存储器和设置操作可以施加到可变内被存储的范 ...

  8. bzoj千题计划272:bzoj4557: [JLoi2016]侦察守卫

    http://www.lydsy.com/JudgeOnline/problem.php?id=4557 假设当前到了x的子树,现在是合并 x的第k个子树 f[x][j] 表示x的前k-1个子树该覆盖 ...

  9. 第一次使用 markdown 写博客

    Web前端 js 框架(四选一) 有可能的话,学 Vue.js ,React.js ,Angular.js,Awrelia css 学习 Sass 学会 css 的可编程 HTML5 详细语法 Nod ...

  10. [转载]JavaScript异步编程助手:Promise模式

    http://www.csdn.net/article/2013-08-12/2816527-JavaScript-Promise http://www.cnblogs.com/hustskyking ...