在分析虚拟内存管理前要先看下linux内核内存的具体分配我開始就是困在这个地方。对内核内存的分类不是非常清晰。我摘录当中的一段:

内核内存地址

===========================================================================================================

在linux的内存管理中,用户使用0~3GB的地址空间。而内核仅仅是用了3GB~4GB区间的地址空间。共1GB。非连

续空间的物理映射就位于3GB~4GB之间。例如以下图示



0GB                                                          3GB                   4GB

而关于内核空间中这1GB是怎样分配的呢,详细请看下图:



一般会把内核空间中大于896M的空间称作内核空间中的高端内存。内核能够用三种不同的机制将页框映射到高端

内存:永久内核映射、暂时内核映射和非连续内存分配。本文中将要谈论的是非连续内存分配。

       从上图能够知道,在物理内存的末尾和非连续内存区之间插入了一个大小为8MB的区间,这是一个安全区,

目的是“捕获”对非连续区的非法訪问。出于相同的理由。在其他非连续区间也插入了大小为4KB的安全区。而每一个

非连续区的大小都是4KB的倍数。例如以下图:



非连续内存的线性地址空间是从VMALLOC_START~VMALLOC_END,共128MB大小。

当内核须要用vmalloc类的函数

进行非连续内存分配时,就会申请一个vm_struct结构来描写叙述相应的vmalloc区,若分配多个vmalloc的内存区,那

么相邻两个vmalloc区之间的间隔大小至少为4KB,即至少是一个页框大小PAGE——SIZE。如上图。

===============================================================================================================

这里强调下:上面的图示表示的不过虚拟地址,而实际的物理地址是分DMA和常规地址及高端地址的;

linux内核内存大概的就是上面的图示了。当中8MB说是为了安全。防止越界訪问(看了非常多书,都这么说),就是这8MB虚拟地址不做不论什么映射(这样不过虚拟地址。没有实际的物理地址浪费)

由上面的图示能够知道,前面896MB(其它架构能够能不是以896MB切割的)就是我们说的内核逻辑地址(记住是内核逻辑地址。假设就说逻辑地址的话应该是指x86架构中虚拟地址中不包含段地址部分,也就是段内偏移部分);这部分内存地址已经在系统初始化的时候和物理页做好了映射,并且是一一映射,我们一般使用的时候就是用该部分的内存地址(kmalloc函数使用就是该部分)。这段内存是很高效的,由于不须要做其它的映射和改动页表就能够直接使用。本blog是分析下虚拟内存地址的映射,主要是vmalloc函数和ioremap函数;

vmalloc函数

vmalloc函数是驱动模块常常使用的内存分配函数。该函数返回的虚拟地址连续的(事实上这也有疑问。由于上面vmalloc的虚拟地址区有4k切割地址,假设vmalloc分配的虚拟地址非常大。那么中间是否有4kb的切割地址?),可是不保证所映射的物理地址也是连续的。

它主要对上面的vmalloc_start到vmalloc_end这段内存操作,返回的虚拟地址就是这一部分的。

在大多数情况下,不鼓舞使用vmalloc来申请内存,原因: 1、通过vmalloc函数获取的内存使用效率不高(由于要自己做映射,要推断哪些是空暇页等操作)。2、有些架构上给vmalloc使用的内存地址很小。对vmalloc调用可能会由于没有空暇地址而失败;3、不能保证物理地址是连续的,对一些驱动程序来说这是硬伤;综上所述。最好不要用包括vmalloc的代码作为内核的主线代码。

以下大概来说下vmalloc函数的原型:

void *vmalloc(unsigned long size);

该函数的实现有3个步骤:1、在vmalloc区域分配一段连续的虚拟内存地址;2、通过伙伴系统获取物理页;3、通过对页表的操作。把1中获取到的虚拟地址映射到2中分配到物理页上;

注意:

1、上面的图示我们能够看出每一个vmalloc虚拟地址之间都有4kb的切割区域(其作用就是防止越界。形成一个空洞,越界时产生异常),所以vmalloc函数实现时,会在size对齐后再添加4kb大小(一个页的大小)。

2、在分配物理页时,会从高端地址(上面的图示表示的不过虚拟地址而已,物理内存分配能够看linux内核内存分配(一、基本概念)中物理页和虚拟地址的映射图)分配。gfp为:GFB_KERNEL | _GFP_HIGHMEM;表示该函数可能睡眠,分配的物理地址来自高端物理页。

常规物理页给kmalloc使用;vmalloc函数分配高端物理页时使用alloc_page函数或者alloc_pages_node函数来分配一个整页,多次调用分配函数来完毕全部的物理页的分配,这样就不能保证全部的物理页一定连续了。

3、对虚拟地址映射时不会对额外的4k的切割地址进行映射,第2步中也不会对这4k的虚拟切割地址进行分配映射的物理页。

以下是vmalloc的映射图。图来自《深入linux设备驱动程序内核机制》

上图中:从vmalloc区域分配的两个虚拟页地址映射到物理地址的高端页面。当中高端内存是不连续的,虚拟地址最后一个页没有进行映射,那就是额外的4k切割页面。

用vmalloc分配得到的地址是不能在微处理器之外使用的。由于它们仅仅在处理器的内存管理单元上才有意义。

使用vmalloc函数的正确场合是在分配一大块连续的、仅仅在软件中存在的、用于缓冲的内存区域的时候。

ioremap函数

函数原型:void __iomem  *ioremap(unsigned long phys_addr,  size_t  size);此处的__iomem仅仅是标识返回的地址是io类型的地址;该函数用来把vmalloc区域之间的内存映射到设备I/O地址空间,这个函数和vmalloc函数的实现很相似,不同的地方就是vmalloc是通过伙伴系统分配到物理页。而ioremap函数却是利用设备的I/O空间,而不是系统物理页;至于其它操作能够看:訪问I/O内存和I/Oport设备

ioremap函数很多其它用于映射(物理的)PCI缓冲区地址到(虚拟的)内核空间。ioremap函数映射的内存须要用iounmap函数来释放;

vmalloc和kmalloc比較

kmalloc函数:

1、得到的内存保留上次使用的数据,不正确申请到的内存进行初始化(zmalloc函数会初始化申请到的内存)。

2、返回的逻辑地址(事实上也是虚拟地址)和映射的物理页都是连续的。调用该函数时可能会休眠;

3、kmalloc函数和__get_free_pages函数返回的内存地址都是虚拟地址,事实上际的物理地址须要通过MMU转换后得到(事实上MMU就是通过页表机制来转换的)。

4、kmalloc函数和__get_free_pages函数使用的虚拟地址范围与物理内存是一一相应的,可能有个常量偏移。这两个函数不须要改动页表。

5、kmalloc函数申请的内存大小是有限制的,一般依据架构决定;

vmalloc函数和ioremap函数:

1、使用效率不高,物理页不保证连续,虚拟地址保证连续。

2、vmalloc函数和ioremap函数使用的地址范围全然是虚拟的。每次分配都要通过对页表的操作来建立映射关系;

3、vmalloc函数一般用来分配大块的内存。而且返回的地址不能在微处理器之外使用;

转载地址:http://blog.csdn.net/yuzhihui_no1/article/details/47429411

linux内核内存分配(三、虚拟内存管理)的更多相关文章

  1. linux内核内存分配(一、基本概念)

    内存分配是Linux比较复杂也是比较重要的部分,这个和ssd驱动很类似:物理地址和虚拟地址的映射关系.下面总结下最近看到的有关内存分配的内容和自己的理解: 1.一致内存访问和非一致内存访问 上图来自& ...

  2. Linux内核分析(三)----初识linux内存管理子系统

    原文:Linux内核分析(三)----初识linux内存管理子系统 Linux内核分析(三) 昨天我们对内核模块进行了简单的分析,今天为了让我们今后的分析没有太多障碍,我们今天先简单的分析一下linu ...

  3. 十天学Linux内核之第三天---内存管理方式

    原文:十天学Linux内核之第三天---内存管理方式 昨天分析的进程的代码让自己还在头昏目眩,脑子中这几天都是关于Linux内核的,对于自己出现的一些问题我会继续改正,希望和大家好好分享,共同进步.今 ...

  4. linux内核--内存管理(二)

    一.进程与内存     所有进程(执行的程序)都必须占用一定数量的内存,它或是用来存放从磁盘载入的程序代码,或是存放取自用户输入的数据等等.不过进程对这些内存的管理方式因内存用途不一而不尽相同,有些内 ...

  5. Linux内核内存管理算法Buddy和Slab: /proc/meminfo、/proc/buddyinfo、/proc/slabinfo

    slabtop cat /proc/slabinfo # name <active_objs> <num_objs> <objsize> <objpersla ...

  6. LINUX内核内存屏障

    =================                          LINUX内核内存屏障                          ================= By ...

  7. Linux内核设计第三周——构造一个简单的Linux系统

    Linux内核设计第三周 ——构造一个简单的Linux系统 一.知识点总结 计算机三个法宝: 存储程序计算机 函数调用堆栈 中断 操作系统两把宝剑: 中断上下文的切换 进程上下文的切换 linux内核 ...

  8. linux内核分析第三周

    20135103王海宁 linux内核分析第三周 http://mooc.study.163.com/course/USTC-1000029000  按照课堂提供的方法,命令行一行行敲上去,我是手机缓 ...

  9. 20135327郭皓--Linux内核分析第三周 构造一个简单的Linux系统MenuOS

    Linux内核分析第三周  构造一个简单的Linux系统MenuOS 前提回顾 1.计算机是如何工作的三个法宝 1.存储程序计算机 2.函数调用堆栈 3.中断 2.操作系统的两把宝剑 中断上下文的切换 ...

随机推荐

  1. Luogu1641 SCOI2010生成字符串(组合数学)

    NOI2018冒泡排序的一个子问题. #include<iostream> #include<cstdio> #include<cmath> #include< ...

  2. C++ pbds 库平衡树(tree)

    头文件 #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> //或者直接 ...

  3. 【题解】 [HNOI2015]落忆枫音 (拓扑排序+dp+容斥原理)

    原题戳我 Solution: (部分复制Navi_Aswon博客) 解释博客中的两个小地方: \[\sum_{\left(S是G中y→x的一条路径的点集\right))}\prod_{2≤j≤n,(j ...

  4. 【BZOJ2054】疯狂的馒头(并查集,线段树)

    [BZOJ2054]疯狂的馒头(并查集,线段树) 题面 BZOJ 然而权限题,随便找个离线题库看看题吧. 题解 线段树就是个暴力,如果数据可以构造就能卡掉,然而不能构造,要不然复杂度瓶颈成为了读入了. ...

  5. GO内存管理

    TMalloc模型 http://www.360doc.com/content/16/0811/09/14513665_582407916.shtml http://blog.csdn.net/cho ...

  6. HTML培训课程-------Day02(表格和框架)

    表格 在网页中表格是一种经常使用到得设计结构,就像表格的内容中可以包含任何的数据,如文字.图像.表单.超链接.表格等等,所有在HTML中可以使用的数据,都可以被设置在表格中,所以有关表格设置的标记与属 ...

  7. oracle connect by用法篇 (转)

    1.基本语法 select * from table [start with condition1] connect by [prior] id=parentid 1 2 1 2 一般用来查找存在父子 ...

  8. Git error: hint: Updates were rejected because the remote contains work that you do hint: not have locally

    hint: Updates were rejected because the remote contains work that you dohint: not have locally. This ...

  9. 【转载】ssh(安全外壳协议)

    http://baike.baidu.com/subview/16184/5909252.htm?fr=aladdin

  10. javascript的单例/单体模式(Singleton)

    首先,单例模式是对象的创建模式之一,此外还包括工厂模式.单例模式的三个特点:1,该类只有一个实例2,该类自行创建该实例(在该类内部创建自身的实例对象)3,向整个系统公开这个实例接口 Java中大概是这 ...