HDU1069(KB12-C)
Monkey and Banana
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 13837 Accepted Submission(s): 7282
Problem Description
The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.
They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.
Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.
Input
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.
Output
Sample Input
Sample Output
Source
//2017-03-14
#include <iostream>
#include <cstdio>
#include <cstring> using namespace std; const int N = ;
int n, dp[N*];//DAG模型,dp[i]表示从第i个箱子出发能够走的最大值
struct node
{
int x, y, z;
void setNode(int a, int b, int c){
this->x = a;
this->y = b;
this->z = c;
}
}box[N*]; int dfs(int i)
{
int& ans = dp[i];
if(ans)return ans;//记忆化搜索
ans = ;
for(int j = ; j < n*; j++)
{
if(box[i].x > box[j].x && box[i].y > box[j].y)
{
ans = max(ans, dfs(j));
}
}
ans += box[i].z;
return ans;
} int main()
{
int a, b, c, kase = ;
while(cin>>n && n)
{
int cnt = ;
memset(dp, , sizeof(dp));
for(int i = ; i < n; i++)
{
cin>>a>>b>>c;
box[cnt++].setNode(a, b, c);
box[cnt++].setNode(a, c, b);
box[cnt++].setNode(b, a, c);
box[cnt++].setNode(b, c, a);
box[cnt++].setNode(c, a, b);
box[cnt++].setNode(c, b, a);
}
for(int i = ; i < n*; i++)
dfs(i);
int ans = ;
for(int i = ; i < n*; i++)
if(dp[i] > ans)ans = dp[i];
cout<<"Case "<<++kase<<": maximum height = "<<ans<<endl;
} return ;
}
HDU1069(KB12-C)的更多相关文章
- HDU1069 Monkey and Banana
HDU1069 Monkey and Banana 题目大意 给定 n 种盒子, 每种盒子无限多个, 需要叠起来, 在上面的盒子的长和宽必须严格小于下面盒子的长和宽, 求最高的高度. 思路 对于每个方 ...
- HDU-1069 Monkey and Banana DAG上的动态规划
题目链接:https://cn.vjudge.net/problem/HDU-1069 题意 给出n种箱子的长宽高 现要搭出最高的箱子塔,使每个箱子的长宽严格小于底下的箱子的长宽,每种箱子数量不限 问 ...
- ACM-经典DP之Monkey and Banana——hdu1069
***************************************转载请注明出处:http://blog.csdn.net/lttree************************** ...
- HDU1069:Monkey and Banana(DP+贪心)
Problem Description A group of researchers are designing an experiment to test the IQ of a monkey. T ...
- hdu1069(dp)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 分析: 每种石头有六种方法,那么等效为:有6*n种石头. 根据x和y排序(要保证相应的x.y总有 ...
- HDU1069 最长上升子序列
emm....矩形嵌套 还记得吗....就是它... 直接贴代码了.... import java.util.ArrayList; import java.util.Arrays; import ja ...
- hdu1069线性dp
/* dp[i]:取第i个方块时最多可以累多高 */ #include<bits/stdc++.h> using namespace std; struct node{ int x,y,z ...
- HDU-1069.MonkeyandBanana(LIS)
本题大意:给出n个长方体,每种长方体不限量,让你求出如何摆放长方体使得最后得到的总高最大,摆设要求为,底层的长严格大于下层的长,底层的宽严格大于下层的宽. 本题思路:一开始没有啥思路...首先应该想到 ...
- HDU1069(还是dp基础)
今天不想说太多废话-由于等下要写自己主动提交机. 不知道能不能成功呢? 题目的意思就是,一个猴子,在叠砖头 ...以下的要严格大于上面的.求叠起来最高能到多少- n非常少,n^2算法毫无压力-话说dp ...
随机推荐
- SpringBoot启动过程分析
我们知道,SpringBoot程序的启动很简单,代码如下: @SpringBootApplication public class Application { public static void m ...
- SQL面试题之行转列
典型的课程表: mysql> select * from course; +----+------------+----------+------------+ | id | teacher_i ...
- MVC3学习:将excel文件导入到sql server数据库
思路: 1.将excel文件导入到服务器中. 2.读取excel文件,转换成dataset. 3.循环将dataset数据插入到数据库中. 本例子使用的表格为一个友情链接表F_Link(LinkId, ...
- 使用安装 php-memcache-client
1.memcache:是一个高效的分布式内存对象缓存系统 2. IES---请求--->服务器(apace) | | |---->会查看memcache.是否有IES想要的内容--> ...
- JAVA框架之Spring【Spring事务详解】
spring提供的事务管理可以分为两类:编程式的和声明式的.编程式的,比较灵活,但是代码量大,存在重复的代码比较多:声明式的比编程式的更灵活.编程式主要使用transactionTemplate.省略 ...
- jdk8-lambda表达式的使用
1, 遍历list集合 List<Integer> list = new ArrayList<>(); list.add(1); list.add(2); list.add(3 ...
- linux上搭建ftp、vsftp, 解决访问ftp超时连接, 解决用户指定访问其根目录,解决ftp主动连接、被动连接的问题
linux上搭建ftp 重要 解决如何搭建ftp 解决用户指定访问其根目录 解决访问ftp超时连接 解决ftp主动连接.被动连接的问题 1.安装ftp ...
- windows环境下搭建Java开发环境(一):jdk安装和配置
一.资源下载 官网:http://www.oracle.com/technetwork/java/javase/downloads/index.html 本人安装的是jdk1.8,百度云资源:链接:h ...
- 机器学习之scikit-learn库的使用
1.scikit-learn库简介 scikit-learn是一个整合了多种常用的机器学习算法的Python库,又简称skLearn.scikit-learn非常易于使用,为我们学习机器学习提供了一个 ...
- Android studio的gradle
1. gradle的基本概念 gradle构建* Android Studio使用`Gradle`构建工具,Eclipse的ADT插件使用的是`Ant`构建工具* 构建:生成app的过程,执行一些的命 ...