MT【98】三元对称不等式
评:这是一道浙江省省赛题,这里利用对称性,设$x\le y\le z$从而解决了问题。值得注意的是此处三元轮换对称正好也是完全对称,但如果变成一般的$n\ge4$元对称问题时,就不能设大小关系。事实上有如下难题:
解答:
MT【98】三元对称不等式的更多相关文章
- 从首个IMO季军谈起 作者 : 付云皓
刚刚过去的IMO,中国史无前例地获得了第三名,也是自1997年来近20年首次跌出前二.感谢微信等社交软件,相信现在这个新闻已经以火箭的速度传播了. 作为一个与数学竞赛及IMO打了多年交道的人,我一直有 ...
- MT【138】对称乎?
已知\(a+b=1\),求\((a^3+1)(b^3+1)\)的最大值______ : 解答: \[ \begin{align*} (a^3+1)(b^3+1) &=a^3+b^3+a^3+b ...
- MT【25】切线不等式原理及例题
评:切线不等式和琴生(Jesen)不等式都是有其几何意义的,在对称式中每一项单变量后利用图像的凹凸性得到一个线性的关系式.已知的条件往往就是线性条件,从而可以得到最值.
- MT【57】2017联赛一试解答倒数第二题:一道不等式的最值
注:康拓诺维奇不等式的应用
- MT【33】证明琴生不等式
解答:这里数学归纳法证明时指出关键的变形. 评:撇开琴生不等式自身的应用和意义外,单单就这个证明也是一道非常不错的练习数学归纳法的经典题目.
- MT【200】一道自招的不等式
(2018武汉大学自招)设$x,y,z\ge0,xy+yz+zx=1$证明:$\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\ge \dfrac{5}{2}$ ...
- MT 【331】两元非齐次不等式
若正实数$x,y$满足$x^3+y^3=(4x-5y)y$ 则 $y$ 的最大值为____ 解答:$x^3+y^3+y^2=4(x-y)y\le x^2$,故$y^3+y^2=x^2-x^3=\dfr ...
- MT【327】两道不等式题
当$x,y\ge0,x+y=2$时求下面式子的最小值:1)$x+\sqrt{x^2-2x+y^2+1}$2)$\dfrac{1}{5}x+\sqrt{x^2-2x+y^2+1}$ 解:1)$P(x,y ...
- MT【322】绝对值不等式
已知 $a,b,c\in\mathbb R$,求证:$|a|+|b|+|c|+|a+b+c|\geqslant |a+b|+|b+c|+|c+a|$ 分析:不妨设$c=\max\{a,b,c\},\d ...
随机推荐
- Centos7 搭建Go语言编译环境
1.准备工作 下载Go:https://studygolang.com/dl 2.安装Go [root@node2 local]# .linux-amd64.tar.gz -C /usr/local/ ...
- linux中原子操作实现方式
原子操作提供了指令原子执行,中间没有中断.就像原子被认为是不可分割颗粒一样,原子操作(atomic operation)是不可分割的操作. 如下面简单的例子: Thread 1 ...
- springboot 定制错误页面
项目中经常遇到的异常情况 400-Bad Request 401-Unauthorized If the request already included Authorization credenti ...
- 十万的License只取决于一个连接
前段时间看到一份代码,小规模.低难度的一个应用,MVC用到极致,业务逻辑却混成一团麻,应该是中了培训班的毒.现在的程序员,大多是没仔细读过<现代操作系统>,没看过编译原理,不知道堆与栈,没 ...
- Patchwork(2013年)--CNV检测方法流程
文章题目:Patchwork: allele-specific copy number analysis of whole-genome sequenced tumor tissue 特点: 可以检测 ...
- 2017-2018-2 20155203《网络对抗技术》 Exp8:Web基础
基础问题回答 (1)什么是表单 我认为,form概念主要区分于table,table是用网页布局设计,是静态的,form是用于显示和收集信息传递到服务器和后台数据库中,是动态的: 以下是表单的百度百科 ...
- Servlet——提交表单信息,Servlet之间的跳转
HTML表单标签:<form></form> 属性: actoion: 提交到的地址,默认为当前页面 method: 表单提交方式 有get和post两种方式,默认为get ...
- [agc011C]Squared Graph-[二分图]
Description 传送门 Solution 我们以下考虑的情况都是原图中非孤立的点. 题目要求新图的连通块个数.这个不好算,我们考虑计算新图的联通块内的特征点(x,y),即无法通过移动找到(t, ...
- Hadoop开发第6期---HDFS的shell操作
一.HDFS的shell命令简介 我们都知道HDFS 是存取数据的分布式文件系统,那么对HDFS 的操作,就是文件系统的基本操作,比如文件的创建.修改.删除.修改权限等,文件夹的创建.删除.重命名等. ...
- HTML基础之CSS
CSS选择器 1.id选择器 2.class选择器 3.标签选择器 4.层级选择器(空格) 5.组合选择器(逗号) 6.属性选择器(中括号) <!DOCTYPE html> <htm ...