bzoj2115,戳我戳我

Solution:

  • 看得题解(逃,我太菜了,想不出这种做法
  • 那么丢个链接

Attention:

  • 板子别写错了 又写错了这次
  • \(long long\)是左移63位,多了会溢出就会出鬼

Code:

//It is coded by Ning_Mew on 5.29
#include<bits/stdc++.h>
#define LL long long
using namespace std; const int maxn=5e4+7,maxm=1e5+7; int n,m;
LL x[70],sum[maxn],ans;
struct Edge{
int nxt,to;LL dis;
}edge[maxm*2];
int head[maxn],cnt=0;
bool vis[maxn]; void add(int from,int to,LL dis){
edge[++cnt].nxt=head[from]; edge[cnt].dis=dis;
edge[cnt].to=to; head[from]=cnt;
}
void push(LL ss){
for(int i=63;i>=0;i--){
if((ss>>i)&1){
if(!x[i]){x[i]=ss;return;}
else{ss=(ss^x[i]);}
}
}
}
void dfs(int u){
vis[u]=1;
for(int i=head[u];i!=0;i=edge[i].nxt){
int v=edge[i].to;
if(vis[v]){
push( ((sum[u]^edge[i].dis)^sum[v]) );
continue;
}else{
sum[v]=(sum[u]^edge[i].dis);
dfs(v);
}
}
} int main(){
freopen("in.in","r",stdin);
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
int x,y;LL z;scanf("%d%d%lld",&x,&y,&z);
add(x,y,z);add(y,x,z);
}
memset(vis,false,sizeof(vis));
dfs(1);
ans=sum[n];
for(int i=63;i>=0;i--){
if((ans^x[i])>ans)ans=(ans^x[i]);
}
printf("%lld\n",ans);
return 0;
}

博主蒟蒻,随意转载。但必须附上原文链接:http://www.cnblogs.com/Ning-Mew/,否则你会终生找不到妹子!!!

【题解】 bzoj2115: [Wc2011] Xor (线性基+dfs)的更多相关文章

  1. 【BZOJ-2115】Xor 线性基 + DFS

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2142  Solved: 893[Submit][Status] ...

  2. BZOJ2115:[WC2011] Xor(线性基)

    Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 ...

  3. BZOJ 2115: [Wc2011] Xor 线性基 dfs

    https://www.lydsy.com/JudgeOnline/problem.php?id=2115 每一条从1到n的道路都可以表示为一条从1到n的道路异或若干个环的异或值. 那么把全部的环丢到 ...

  4. BZOJ.2115.[WC2011]Xor(线性基)

    题目链接 \(Description\) 给定一张无向带边权图(存在自环和重边).求一条1->n的路径,使得路径经过边的权值的Xor和最大.可重复经过点/边,且边权和计算多次. \(Soluti ...

  5. BZOJ 2115 [Wc2011] Xor ——线性基

    [题目分析] 显然,一个路径走过两边是不需要计算的,所以我么找到一条1-n的路径,然后向该异或值不断异或简单环即可. 但是找出所有简单环是相当复杂的,我们只需要dfs一遍,找出所有的环路即可,因为所有 ...

  6. 【题解】LOJ6060 Set(线性基)

    [题解]LOJ6060 Set(线性基) orz gql 设所有数的异或和为\(S\),答案是在\(\max (x_1+S\and x_1)\)的前提下\(\min x_1\)输出\(x_1\) 转换 ...

  7. 【BZOJ2115】[Wc2011] Xor 高斯消元求线性基+DFS

    [BZOJ2115][Wc2011] Xor Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ...

  8. 2115: [Wc2011] Xor (线性基+dfs)

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 5714  Solved: 2420 题目链接:https://w ...

  9. BZOJ2115 [Wc2011] Xor 【线性基】

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 3915  Solved: 1633 [Submit][Stat ...

  10. bzoj 2115: [Wc2011] Xor【线性基+dfs】

    -老是想到最长路上 其实可以这样:把每个环的xor和都存起来,然后任选一条1到n的路径的xor和ans,答案就是这个ans在环的线性基上跑贪心. 为什么是对的--因为可以重边而且是无相连通的,并且对于 ...

随机推荐

  1. SJA1000 CAN驱动程序演示实验

    SJA1000 CAN驱动程序演示实验 2016-04-12 20:41:22来源: eefocus 关键字:SJA1000  CAN  驱动程序  演示实验   收藏 评论(0) 分享到 微博 QQ ...

  2. odoo方法

    一. 类似于前面有个_ 的方法,格式是如下def _getdlvqty(self, cr, uid, ids, field_names, args, context=None): def _get_p ...

  3. html样式表格

    <html><body><table border="1">  <tr height="20px">    &l ...

  4. python 3.x 用户登录重设密码

    import os import sys import getpass login_username = 'admin' login_password = ' u = 0 while u < 3 ...

  5. web窗体的运用

    using System; using System.Collections.Generic; using System.Linq; using System.Web; namespace WebAp ...

  6. OLEDB数据源和目标组件

    在SSIS工程的开发过程中,OLEDB 数据源和目标组件是最常用的数据流组件.从功能上讲,OLEDB 数据源组件用于从OLEDB 提供者(Provider)中获取数据,传递给下游组件,OLEDB提供者 ...

  7. rabbitMQ教程(三)一篇文章看懂rabbitMQ

    一.rabbitMQ是什么: RabbitMQ,遵循AMQP协议,由内在高并发的erlanng语言开发,用在实时的对可靠性要求比较高的消息传递上. 学过websocket的来理解rabbitMQ应该是 ...

  8. centos 7 git的管理和使用

    一.linux 安装git (服务端) 1.首先创建用户账号 useradd zlx passwd zlx .... 2.创建目录git仓库 mkdir zlx_git.git 3.赋权限 chown ...

  9. Json和Map互转,四个包(org.json/net.sf.json/com.google.gson/com.alibaba.fastjson)

    目前使用的(org.json/net.sf.json/com.google.gson/com.alibaba.fastjson)这四种json-map互转,其他的以后在补充.............. ...

  10. 关于Unity物理事件的执行顺序的最新理解

    物体A: public class A:{ B b; void FixedUpdate(){ if(input.GetKeyDow(Keycode.I)) { collider.enable=fals ...