[转]状态压缩dp(状压dp)
状态压缩动态规划(简称状压dp)是另一类非常典型的动态规划,通常使用在NP问题的小规模求解中,虽然是指数级别的复杂度,但速度比搜索快,其思想非常值得借鉴。
为了更好的理解状压dp,首先介绍位运算相关的知识。
1.’&’符号,x&y,会将两个十进制数在二进制下进行与运算,然后返回其十进制下的值。例如3(11)&2(10)=2(10)。
2.’|’符号,x|y,会将两个十进制数在二进制下进行或运算,然后返回其十进制下的值。例如3(11)|2(10)=3(11)。
3.’^’符号,x^y,会将两个十进制数在二进制下进行异或运算,然后返回其十进制下的值。例如3(11)^2(10)=1(01)。
4.’<<’符号,左移操作,x<<2,将x在二进制下的每一位向左移动两位,最右边用0填充,x<<2相当于让x乘以4。相应的,’>>’是右移操作,x>>1相当于给x/2,去掉x二进制下的最有一位。
这四种运算在状压dp中有着广泛的应用,常见的应用如下:
1.判断一个数字x二进制下第i位是不是等于1。
方法:if ( ( ( 1 << ( i - 1 ) ) & x ) > 0)
将1左移i-1位,相当于制造了一个只有第i位上是1,其他位上都是0的二进制数。然后与x做与运算,如果结果>0,说明x第i位上是1,反之则是0。
2.将一个数字x二进制下第i位更改成1。
方法:x = x | ( 1<<(i-1) )
证明方法与1类似,此处不再重复证明。
3.把一个数字二进制下最靠右的第一个1去掉。
方法:x=x&(x-1)
感兴趣的读者可以自行证明。
位运算在状压dp中用途十分广泛,请看下面的例题。
【例1】有一个N*M(N<=5,M<=1000)的棋盘,现在有1*2及2*1的小木块无数个,要盖满整个棋盘,有多少种方式?答案只需要mod1,000,000,007即可。
例如:对于一个2*2的棋盘,有两种方法,一种是使用2个1*2的,一种是使用2个2*1的。
【算法分析】
在这道题目中,N和M的范围本应该是一样的,但实际上,N和M的范围却差别甚远,对于这种题目,首先应该想到的就是,正确算法与这两个范围有关!N的范围特别小,因此可以考虑使用状态压缩动态规划的思想,请看下面的图:
假设第一列已经填满,则第二列的摆设方式,只与第一列对第二列的影响有关。同理,第三列的摆设方式也只与第二列对它的影响有关。那么,使用一个长度为N的二进制数state来表示这个影响,例如:4(00100)就表示了图上第二列的状态。
因此,本题的状态可以这样表示:
dp[i][state]表示该填充第i列,第i-1列对它的影响是state的时候的方法数。i<=M,0<=state<2N
对于每一列,情况数也有很多,但由于N很小,所以可以采取搜索的办法去处理。对于每一列,搜索所有可能的放木块的情况,并记录它对下一列的影响,之后更新状态。状态转移方程如下:
dp[i][state]=∑dp[i-1][pre]每一个pre可以通过填放成为state
对于每一列的深度优先搜索,写法如下:
//第i列,枚举到了第j行,当前状态是state,对下一列的影响是nex
void dfs(int i,int j,int state,int nex)
{
if (j==N)
{
dp[i+1][nex]+=dp[i][state];
dp[i+1][nex]%=mod;
return;
}
//如果这个位置已经被上一列所占用,直接跳过
if (((1<<j)&state)>0)
dfs(i,j+1,state,nex);
//如果这个位置是空的,尝试放一个1*2的
if (((1<<j)&state)==0)
dfs(i,j+1,state,nex|(1<<j));
//如果这个位置以及下一个位置都是空的,尝试放一个2*1的
if (j+1<N && ((1<<j)&state)==0 && ((1<<(j+1))&state)==0)
dfs(i,j+2,state,nex);
return;
}
状态转移的方式如下:
for (int i=1;i<=M;i++)
{
for (int j=0;j<(1<<N);j++)
if (dp[i][j])
{
dfs(i,0,j,0);
}
}
最终,答案就是dp[M+1][0]。
【代码实现】
/*
ID:aqx
PROG:铺地砖
LANG:c++
*/
//第i列,枚举到了第j行,当前状态是state,对下一列的影响是nex
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
int N, M;
long long dp[1005][34];
void dfs(int i,int j,int state,int nex)
{
if (j==N)
{
dp[i+1][nex]+=dp[i][state];
return;
}
//如果这个位置已经被上一列所占用,直接跳过
if (((1<<j)&state)>0)
dfs(i,j+1,state,nex);
//如果这个位置是空的,尝试放一个1*2的
if (((1<<j)&state)==0)
dfs(i,j+1,state,nex|(1<<j));
//如果这个位置以及下一个位置都是空的,尝试放一个2*1的
if (j+1<N && ((1<<j)&state)==0 && ((1<<(j+1))&state)==0)
dfs(i,j+2,state,nex);
return;
}
int main()
{
while (cin>>N>>M)
{
memset(dp,0,sizeof(dp));
if (N==0 && M==0) break;
dp[1][0]=1;
for (int i=1;i<=M;i++)
{
for (int j=0;j<(1<<N);j++)
if (dp[i][j])
{
dfs(i,0,j,0);
}
}
cout<<dp[M+1][0]<<endl;
}
}
【例2】最小总代价(Vijos-1456)
题目描述:
n个人在做传递物品的游戏,编号为1-n。
游戏规则是这样的:开始时物品可以在任意一人手上,他可把物品传递给其他人中的任意一位;下一个人可以传递给未接过物品的任意一人。
即物品只能经过同一个人一次,而且每次传递过程都有一个代价;不同的人传给不同的人的代价值之间没有联系;
求当物品经过所有n个人后,整个过程的总代价是多少。
输入格式:
第一行为n,表示共有n个人(16>=n>=2);
以下为n*n的矩阵,第i+1行、第j列表示物品从编号为i的人传递到编号为j的人所花费的代价,特别的有第i+1行、第i列为-1(因为物品不能自己传给自己),其他数据均为正整数(<=10000)。
(对于50%的数据,n<=11)。
输出格式:
一个数,为最小的代价总和。
输入样例:
2
-1 9794
2724 –1
输出样例:
2724
【算法分析】
看到2<=n<=16,应想到此题和状态压缩dp有关。每个人只能够被传递一次,因此使用一个n位二进制数state来表示每个人是否已经被访问过了。但这还不够,因为从这样的状态中,并不能清楚地知道现在物品在谁 的手中,因此,需要在此基础上再增加一个状态now,表示物品在谁的手上。
dp[state][now]表示每个人是否被传递的状态是state,物品在now的手上的时候,最小的总代价。
初始状态为:dp[1<<i][i]=0;表示一开始物品在i手中。
所求状态为:min(dp[(1<<n)-1][j]); 0<=j<n
状态转移方程是:
dp[state][now]=min(dp[pre][t]+dist[now][t]);
pre表示的是能够到达state这个状态的一个状态,t能够传递物品给now且只有二进制下第t位与state不同。
状态的大小是O((2n)*n),转移复杂度是O(n)。总的时间复杂度是O((2n)*n*n)。
【代码实现】
/*
ID:shijieyywd
PROG:Vijos-1456
LANG:c++
*/
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#define MAXN 20
#define INF 0x3f3f3f3f
using namespace std;
int n;
int edges[MAXN][MAXN];
int dp[65546][MAXN];
int min(int a, int b)
{
if (a == -1) return b;
if (b == -1) return a;
return a < b ? a : b;
}
int main() {
freopen("p1456.in", "r", stdin);
scanf("%d", &n);
int t;
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
scanf("%d", &edges[i][j]);
}
}
memset(dp, -1, sizeof(dp));
for (int i = 0; i < n; i++)
{
dp[1 << i][i] = 0;
}
int ans = -1;
for (int i = 0; i < 1 << n; i++)
{
for (int j = 0; j < n; j++)
{
if (dp[i][j] != -1)
{
for (int k = 0; k < n; k++)
{
if (!(i & (1 << k)))
{
dp[i | (1 << k)][k] = min(dp[i | (1 << k)][k], dp[i][j] + edges[j][k]);
if ((i | (1 << k)) == (1 << n) - 1) ans = min(ans, dp[i | (1 << k)][k]);
}
}
}
}
}
if (ans != -1)
printf("%d\n", ans);
else printf("0\n");
return 0;
}
【例3】胜利大逃亡(续)(Hdoj-1429)
题目描述:
Ignatius再次被魔王抓走了(搞不懂他咋这么讨魔王喜欢)……
这次魔王汲取了上次的教训,把Ignatius关在一个n*m的地牢里,并在地牢的某些地方安装了带锁的门,钥匙藏在地牢另外的某些地方。刚开始Ignatius被关在(sx,sy)的位置,离开地牢的门在(ex,ey)的位置。Ignatius每分钟只能从一个坐标走到相邻四个坐标中的其中一个。魔王每t分钟回地牢视察一次,若发现Ignatius不在原位置便把他拎回去。经过若干次的尝试,Ignatius已画出整个地牢的地图。现在请你帮他计算能否再次成功逃亡。只要在魔王下次视察之前走到出口就算离开地牢,如果魔王回来的时候刚好走到出口或还未到出口都算逃亡失败。
输入格式:
每组测试数据的第一行有三个整数n,m,t(2<=n,m<=20,t>0)。接下来的n行m列为地牢的地图,其中包括:
. 代表路
* 代表墙
@ 代表Ignatius的起始位置
^ 代表地牢的出口
A-J 代表带锁的门,对应的钥匙分别为a-j
a-j 代表钥匙,对应的门分别为A-J
每组测试数据之间有一个空行。
输出格式:
针对每组测试数据,如果可以成功逃亡,请输出需要多少分钟才能离开,如果不能则输出-1。
输入样例:
4 5 17
@A.B.
a*.*.
*..*^
c..b*
输出样例:
16
【算法分析】
初看此题感觉十分像是宽度优先搜索(BFS),但搜索的过程中如何表示钥匙的拥有情况,却是个问题。借鉴状态压缩的思想,使用一个10位的二进制数state来表示此刻对10把钥匙的拥有情况,那么,dp[x][y][state]表示到达(x,y),钥匙拥有状况为state的最短路径。另外,需要注意到一旦拥有了某一把钥匙,那个有门的位置就如履平地了。
代码的实现方式可以采用Spfa求最短路的方式。值得一提的是,Spfa算法本来就是一种求解最短路径问题的动态规划算法,本文假设读者已经非常熟悉Spfa等基础算法,在此处不再赘述。
状态压缩dp可以出现在各种算法中,本题就是典型的搜索算法和状态压缩dp算法结合的题目。另外,很多状态压缩dp本身就是通过搜索算法实现的状态转移。
【代码实现】
/*
ID:shijieyywd
PROG:Hdu-1429
LANG:c++
*/
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
using namespace std;
struct Node{
int x;
int y;
int step;
int key;
Node() {}
Node(int a, int b, int s, int k) : x(a), y(b), step(s), key(k) {}
};
int n, m, t;
int arr[25][25];
int door[25][25];
int key[25][25];
int Go[4][2] = {{0, 1}, {0, -1}, {-1, 0}, {1, 0}};
int sx, sy;
int ex, ey;
int vis[25][25][1049];
bool canGo(int x, int y, int k)
{
if (x >= 0 && x < n && y >= 0 && y < m && !arr[x][y])
{
if (vis[x][y][k]) return false;
if ((k & door[x][y]) == door[x][y]) return true;
}
return false;
}
int bfs() {
memset(vis, 0, sizeof(vis));
queue<Node> q;
Node s = Node(sx, sy, 0, 0);
q.push(s);
vis[sx][sy][0] = 1;
while (!q.empty())
{
Node e = q.front();
q.pop();
if (e.x == ex && e.y == ey) return e.step;
for (int i = 0; i < 4; i++)
{
int nx = e.x + Go[i][0];
int ny = e.y + Go[i][1];
if (canGo(nx, ny, e.key))
{
Node nex = Node(nx, ny, e.step + 1, e.key | key[nx][ny]);
vis[nx][ny][nex.key] = 1;
q.push(nex);
}
}
}
return 0;
}
int main() {
while (~scanf("%d %d %d\n", &n, &m, &t))
{
memset(arr, 0, sizeof(arr));
memset(door, 0, sizeof(door));
memset(key, 0, sizeof(key));
char c;
for (int i = 0; i < n; i++)
{
for (int j = 0; j < m; j++)
{
scanf("%c", &c);
if (c == '*') arr[i][j] = 1;
else if (c == '@') sx = i, sy = j;
else if (c == '^') ex = i, ey = j;
else if (c >= 'a' && c <= 'z') key[i][j] = 1 << (c - 'a');
else if (c >= 'A' && c <= 'Z') door[i][j] = 1 << (c - 'A');
}
getchar();
}
int ans = bfs();
if (ans < t && ans) printf("%d\n", ans);
else printf("-1\n");
}
return 0;
}
---------------------
作者:qxAi
来源:CSDN
原文:https://blog.csdn.net/u011077606/article/details/43487421
版权声明:本文为博主原创文章,转载请附上博文链接!
[转]状态压缩dp(状压dp)的更多相关文章
- 状态压缩动态规划 状压DP
总述 状态压缩动态规划,就是我们俗称的状压DP,是利用计算机二进制的性质来描述状态的一种DP方式 很多棋盘问题都运用到了状压,同时,状压也很经常和BFS及DP连用,例题里会给出介绍 有了状态,DP就比 ...
- 状态压缩动态规划(状压DP)详解
0 引子 不要999,也不要888,只要288,只要288,状压DP带回家.你买不了上当,买不了欺骗.它可以当搜索,也可以卡常数,还可以装B,方式多样,随心搭配,自由多变,一定符合你的口味! 在计算机 ...
- hihoCoder 1044 : 状态压缩·一 状压dp
思路:状态压缩,dp(i, j)表示考虑前i个数且[i-m+1, i]的选择情况为j.如果要选择当前这个数并且,数位1的个数不超过q,则dp[i+1][nex] = max(dp[i+1][nex], ...
- hihocoder #1044 : 状态压缩·一 状压DP
http://hihocoder.com/problemset/problem/1044 可以看出来每一位的选取只与前m位有关,我们把每个位置起始的前m位选取状态看出01序列,就可以作为一个数字来存储 ...
- 【BZOJ】1076 [SCOI2008]奖励关 期望DP+状压DP
[题意]n种宝物,k关游戏,每关游戏给出一种宝物,可捡可不捡.每种宝物有一个价值(有负数).每个宝物有前提宝物列表,必须在前面的关卡取得列表宝物才能捡起这个宝物,求期望收益.k<=100,n&l ...
- 状态压缩dp 状压dp 详解
说到状压dp,一般和二进制少不了关系(还常和博弈论结合起来考,这个坑我挖了还没填qwq),二进制是个好东西啊,所以二进制的各种运算是前置知识,不了解的话走下面链接进百度百科 https://baike ...
- 【bzoj3195】【 [Jxoi2012]奇怪的道路】另类压缩的状压dp好题
(上不了p站我要死了) 啊啊,其实想清楚了还是挺简单的. Description 小宇从历史书上了解到一个古老的文明.这个文明在各个方面高度发达,交通方面也不例外.考古学家已经知道,这个文明在全盛时期 ...
- CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)
问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...
- hdu 4352 "XHXJ's LIS"(数位DP+状压DP+LIS)
传送门 参考博文: [1]:http://www.voidcn.com/article/p-ehojgauy-ot.html 题解: 将数字num字符串化: 求[L,R]区间最长上升子序列长度为 K ...
随机推荐
- WebService注解总结
@WebService 1.serviceName: 对外发布的服务名,指定 Web Service 的服务名称:wsdl:service.缺省值为 Java 类的简单名称 + Service.(字符 ...
- C++并发编程之std::future
简单地说,std::future 可以用来获取异步任务的结果,因此可以把它当成一种简单的线程间同步的手段.std::future 通常由某个 Provider 创建,你可以把 Provider 想象成 ...
- 在ubuntu server上搭建Hadoop
1. Java安装: Because everything work with java. $ sudo apt-get install openjdk-7-jdk 安装之后,可以查看java的版本信 ...
- DataGridView刷新数据
在DataGridView上操作数据之后,无论是增删改都是对数据库进行了操作,而DataGridView这个控件在操作之后是不会变化的,需要重新的去数据库里读取一下数据才行,可以理解为之刷新 Data ...
- android客户端app和服务端交互token的作用
Android客户端和服务端如何使用Token和Session niceheart关注1人评论34644人阅读2014-09-16 16:38:44 对于初学者来说,对Token和Session的 ...
- Linux让git记住账号密码
Linux让git记住账号密码 ——IT唐伯虎 摘要: Linux让git记住账号密码. 1.进入根目录,指令:cd / 2.创建记录账号密码的文件,指令:touch .git-credentials ...
- vue 使用v-cloak让在页面加载时不显示{{}}花括号
官方说法: 这个指令保持在元素上直到关联实例结束编译. 和 CSS 规则如 [v-cloak] { display: none } 一起用时,这个指令可以隐藏未编译的 Mustache 标签直到实例准 ...
- 数据库类型与JDBC TYPE 和Java类型对应关系
https://blog.csdn.net/seelye/article/details/40105969
- python学习笔记7-excel操作
一.操作excel import xlwt book = xlwt.Workbook() #新建一个excel sheet = book.add_sheet('sheet1') #添加一个sheet页 ...
- js 获取格林尼治时间戳
昨天在一论坛里看到有朋友问 js 如何获取格林尼治时间戳.不少朋友第一反应是 toGMTString ...确实可以得到格林尼治时间,但不是时间戳.虽然我也没有啥好的方法一步到位的获取,不过至少是获取 ...