Hiho #1075: 开锁魔法III
Problem Statement
描述
一日,崔克茜来到小马镇表演魔法。
其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它。初始时,崔克茜将会随机地选择 k 个盒子用魔法将它们打开。崔克茜想知道最后所有盒子都被打开的概率,你能帮助她回答这个问题吗?
输入
第一行一个整数$T$ ($T \leq 100$)表示数据组数。 对于每组数据,第一行有两个整数$n$和$k$ ($1 \leq n \leq 300, 0 \leq k \leq n$)。 第二行有$n$个整数$a_i$,表示第$i$个盒子中,装有可以打开第$a_i$个盒子的钥匙。
输出
对于每组询问,输出一行表示对应的答案。要求相对误差不超过四位小数。
样例输入
4
5 1
2 5 4 3 1
5 2
2 5 4 3 1
5 3
2 5 4 3 1
5 4
2 5 4 3 1
样例输出
0.000000000
0.600000000
0.900000000
1.000000000
The problem is to compute the probability that use $k$ keys to open the $n$ boxes. In fact we only need to comupte the number of methods that successfully opening $n$ boxes by $k$ choices. Then dividing $C_n^k$ is the final result. So, let's focus on the more refined problem.
First, let's use some notations to express the problem.
Assume the key in box $i$ can open box $a[i]$. Then, the boxes can be opend from box $1$ to $n$ is {$a[1], a[2], ..., a[n]$}.
If we determine open box $i$, then we'll use the key $a[i]$ to open box $a[i]$ which contains the $a[a[i]]$ box key.
So we can assume the keys in the $n$ boxes as a permutation of numbers {$1, 2, ..., n$}. The math model here is just the permutation group in Abstract Algebra.
In order to open all $n$ boxes, we first need to check how many cycles in the permutation. Because the number of keys we need to open all boxes must be greater than or equal to the number of cycles in permutation.
So, if define the number of keys is $k$, and the number of cycles in the $n$-permutation is $m$, the above states $k \geq m$.
Now, we need to design an algorithm to solve the problem. The basical idea is Dynamic Programming (DP).
In general, the hard part of DP is to form a sub-problem. Here, based on the analysis of the permutation above, we'll set the sub-problem by cycles. Because there're $m$ cycles in the $n$-permutation, we'll use $m$ steps to solve the problem.
Define: dp[i][j] = the number of methods that using $j$ keys to solve first $i$ cycles.
Thus the problem can be expressed as computing $dp[m][k]$.
Next, let's construct the recursion. Assume we need to compute $dp[i][j]$.
- In order to solve first $i$ cycles, we can first solve $i-1$ cycles and then the $i^{th}$ cycle.
- If we use $k_i$ keys to solve the $i^{th}$ cycle, we can use only $j-k_i$ keys to solve the first $i-1$ cycles.
- $k_i$ can vary from $1$ to $j$. (Because the initial status may not need key solving, thus $m$ can vary to $j$.) And $k_i$ can't be greater than the size of $i^{th}$ cycle, denoted as $l_i$. (Because every key is belong to one box, so the number of keys we choose can't be greater than the number of boxes in all.)
- For every fixed $k_i$, we just need to multiply the result of first $i-1$ cycles and the result of $i^{th}$ cycle, i.e. $dp[i-1][j-k_i] * C_{l_i}^{k_i}$
(Every $k_i$ keys can solve the $i^{th}$ cycle, so the result of solving $i^{th}$ cycle is $ C_{l_i}^{k_i}$.)
According to above statements, we can get the recursion equation. Here, we use array $comb[n][m]$ to denote the math combination $C_n^m$.
$$dp[i][j] = \sum_{m=1}^{j}(dp[i-1][j-m]*comb[cycle\_i\_length][m])$$
So, the problem is done. But there're two additional problems we need to solve priori.
- First, for efficiency, we can compute the combination numbers before we do the DP algorithm. The computing is also based on DP thinking:
- Compute the combination number by DP, i.e. the simple math equation $C_i^j = C_{i-1}^j + C_{i-1}^{j-1}$. Code is
for(int i = 0; i < 500; ++i)
for(int j = 0; j <= i; ++j)
comb[i][j] =
(0 == i || 0 == j) ? 1 : comb[i-1][j] + comb[i-1][j-1];
- Second, we need to compute the $m$ sizes of cycles in the $n$-permutation:
- Get the cycle information in a $n$-permutation, including number of cycles and the size of every cycle. Here we use array $perm$ to indicate the permutation of $n$ elements.
vector<int> cycles; //store the cycle information
bool used[500];
memset(used, 0, sizeof used); for (int i = 0; i < n; ++i){
if(used[i] == true)
continue; int num = 0;
int idx = i;
while(!used[idx])
{
++num;
used[idx] = true;
idx = perm[idx];
} cycles.push_back(num);
}
Hiho #1075: 开锁魔法III的更多相关文章
- hihocoder 1075 : 开锁魔法III
描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它.初始时,崔克茜将会随机地选择 k 个盒子用魔法将它 ...
- #1075 : 开锁魔法III
描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它.初始时,崔克茜将会随机地选择 k 个盒子用魔法将它 ...
- HihoCoder 1075 开锁魔法III(概率DP+组合)
描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它.初始时,崔克茜将会随机地选择 k 个盒子用魔法将它 ...
- hihoCode 1075 : 开锁魔法III
时间限制:6000ms 单点时限:1000ms 内存限制:256MB 描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅 ...
- hrb——开锁魔法I——————【规律】
解题思路:从1到n的倒数之和. #include<stdio.h> #include<string.h> #include<algorithm> using nam ...
- hihocoder1075【开锁魔法】
hihocoder1075[开锁魔法] 题意是给你一个 \(1-n\) 的置换,求选 \(k\) 个可以遍历所有点的概率. 题目可以换个模型:有 \(n\) 个球,有 \(cnt\) 种不同的颜色,求 ...
- BZOJ 5004: 开锁魔法II 期望 + 组合
Description 题面:www.lydsy.com/JudgeOnline/upload/task.pdf Input Output 一般概率题有两种套路: 满足条件的方案/总方案. 直接求概率 ...
- bzoj5003: 与链 5004: 开锁魔法II 5005:乒乓游戏
www.lydsy.com/JudgeOnline/upload/task.pdf 第一题题意可以转为选一个长度k的序列,每一项二进制的1的位置被下一项包含,且总和为1,考虑每个二进制位的出现位置,可 ...
- 【bzoj5004】开锁魔法II 组合数学+概率dp
题目描述 有 $n$ 个箱子,每个箱子里有且仅有一把钥匙,每个箱子有且仅有一把钥匙可以将其打开.现在随机打开 $m$ 个箱子,求能够将所有箱子打开的概率. 题解 组合数学+概率dp 题目约定了每个点的 ...
随机推荐
- Java中TreeMap的基本操作
TreeSet有四种种构造函数可以初始化 在代码中主要列出了常用的三种: 构造方法摘要 TreeSet() 构造一个新的空 set,该 set 根据其元素的自然顺序进行排序. Tr ...
- 使用小技巧加快IDEA的开发速度
一.live template的使用. 1.live template(自定义模板的载入)打开: Ctrl+shift+A 再在命令行中间输入live template弹出用户自定义的界面.需要自行 ...
- Hadoop3集群搭建之——安装hadoop,配置环境
接上篇:Hadoop3集群搭建之——虚拟机安装 下篇:Hadoop3集群搭建之——配置ntp服务 Hadoop3集群搭建之——hive安装 Hadoop3集群搭建之——hbase安装及简单操作 上篇已 ...
- boost--asio
1.asio综述 asio的核心类是io_service,它相当于前摄器模式的Proactor角色,在异步模式下发起的I/O操作,需要定义一个用于回调的完成处理函数,当I/O完成时io_service ...
- DOS的几个常用命令
1.rem:注释 DOS中的注释,其后面的内容会被自动忽略.双冒号(::)也有相同的效果 相当于R语言和Python中的# 2.set:设置变量 set var = 1 将1赋值给变量var 打印出来 ...
- CYS-Sqlite数据导入工具
界面: 曹永思 下载地址:asp.net 2.0版 Sqlite数据导入工具.zip 欢迎转载,转载请注明出处,希望帮到更多人.
- 1071 Speech Patterns
People often have a preference among synonyms of the same word. For example, some may prefer "t ...
- Android自定义视图一:扩展现有的视图,添加新的XML属性
这个系列是老外写的,干货!翻译出来一起学习.如有不妥,不吝赐教! Android自定义视图一:扩展现有的视图,添加新的XML属性 Android自定义视图二:如何绘制内容 Android自定义视图三: ...
- phpwind部署问题
1. 提示"PDO_Mysql 未安装" wamp安装后,首选确保在wamp/php/ext/目录下存在"php_pdo.dll"和"php_pdo_ ...
- Java Applet在IE中浏览
1. IE --> 工具 --> Internet选项 --> 取消“将Java1.6.0.4加入Internet”选择项. 2. 开始 --> 控制面板 --> Jav ...