NEERC Southern Subregional 2011

A - Bonnie and Clyde

solution
双指针搞搞就好。

时间复杂度:\(O(n)\)

B - Building Foundation

题目描述:给定\(n\)条线段(水平或垂直),问能构成多少个矩形(只要矩形的四条边都被线段覆盖即可),水平线段不相交,垂直线段不相交。

solution
预处理出每条垂直的线段与哪些水平的线段相交,然后枚举两条垂直的线段,数一下有多少公共的水平线段\(s\),答案增加\(C_s^2\)。

时间复杂度:\(O(n^3)\)

C - Dice Tower

题目描述:用骰子搭成一个\(1 \times 1 \times h\)的长方体,满足表面的数字的和为\(n\),输出最小的\(h\)或无解。

solution
注意一个骰子和两个骰子之间的状态是无解,其它的特殊情况都比较好想。

时间复杂度:\(O(1)\)

E - Berland Chess

题目描述:给定一个\(n \times m\)的棋盘,棋盘上有一个白色的国王,还有若干个黑色的骑士、主教、城堡(总共不超过15个),现在要移动白色国王,问他安全情况下最少多少步吃掉所有黑色棋子(黑色棋子不动)。

solution
状压,对黑色棋子进行编号,用\((sett, x, y)\)表示当前还剩的棋子集合以及白色国王的坐标,然后bfs求解。可以先预处理出当棋子集合为\(sett\)时,那些格子是安全的。

时间复杂度:\(O(8 \cdot 2^{15}n^2)\)

F - Divisibility

题目描述:给定一个只有小写字母并且字母种类不超过\(10\)种,长度不超过\(14\)的字符串,给每一个字母分配一个\(0\)~\(9\)的数字(不同字母数字不同),那么所给的字符串对应一个没有前导零的数字,求得到的数字的公共约数。

solution
原问题等价于求所有数字的最大公约数+求一个数字的所有约数。
先考虑字母种类不超过\(9\)种的情况,那么对于某一种字母,单独改变这一种字母的分配数字,得到的数字作差,这些数字都是\(num\)的倍数,其中\(num\)是指这种字母的位置取\(1\),其它位置取\(0\)对应的数字。对于每一种字母求出对应的\(num\),求\(num\)的最大公约数。
考虑字母种类数不超过\(10\)种的情况,取其中两种字母,其中一种填\(1\),另一种填\(0\),其它字母不变,交换两种字母的分配数字,作差,得到数字为两种字母对应的\(num\)作差,求出所有二元组的最大公约数。
由于上面得到的最大公约数是作差得到的,所以还要随便求出一种可行的分配方案对应的数字,再求一次最大公约数,才是真正的最大公约数。
由于数字比较大,所以要把数字分解质因数后,再穷举所有约数。

时间复杂度:\(O(能过)\)

K - Emoticons

solution
模拟,按照题目要求的做即可。

时间复杂度:\(O(n)\)

NEERC Southern Subregional 2011的更多相关文章

  1. 2016-2017 ACM-ICPC, NEERC, Southern Subregional Contest (Online Mirror) in codeforces(codeforces730)

    A.Toda 2 思路:可以有二分来得到最后的数值,然后每次排序去掉最大的两个,或者3个(奇数时). /************************************************ ...

  2. 2018-2019 ICPC, NEERC, Southern Subregional Contest

    目录 2018-2019 ICPC, NEERC, Southern Subregional Contest (Codeforces 1070) A.Find a Number(BFS) C.Clou ...

  3. NEERC Southern Subregional 2012

    NEERC Southern Subregional 2012 Problem B. Chess Championship 题目描述:有两个序列\(a, b\),两个序列都有\(n\)个数,并且这\( ...

  4. 2017-2018 ACM-ICPC, NEERC, Southern Subregional Contest, qualification stage

    2017-2018 ACM-ICPC, NEERC, Southern Subregional Contest, qualification stage A. Union of Doubly Link ...

  5. 2017-2018 ACM-ICPC, NEERC, Southern Subregional Contest A E F G H I K M

    // 深夜补水题,清早(雾)写水文 A. Automatic Door 题意 \(n(n\leq 1e9)\)个\(employee\)和\(m(m\leq 1e5)\)个\(client\)要进门, ...

  6. Codeforces 2018-2019 ICPC, NEERC, Southern Subregional Contest

    2018-2019 ICPC, NEERC, Southern Subregional Contest 闲谈: 被操哥和男神带飞的一场ACM,第一把做了这么多题,荣幸成为7题队,虽然比赛的时候频频出锅 ...

  7. 模拟赛小结:2014-2015 ACM-ICPC, NEERC, Southern Subregional Contest

    2014-2015 ACM-ICPC, NEERC, Southern Subregional Contest 2019年10月11日 15:30-20:30(Solved 6,Penalty 740 ...

  8. 2018-2019 ACM-ICPC, NEERC, Southern Subregional Contest, Qualification Stage(11/12)

    2018-2019 ACM-ICPC, NEERC, Southern Subregional Contest, Qualification Stage A. Coffee Break 排序之后优先队 ...

  9. 2014-2015 ACM-ICPC, NEERC, Southern Subregional Contest 题解(PART)(9/13)

    $$2014-2015\ ACM-ICPC,\ NEERC,\ Southern\ Subregional\ Contest$$ A Nasta Rabbara B Colored Blankets ...

随机推荐

  1. Git使用:安装,使用及常用命令整理

    对于程序猿而言,git是最常接触的工具之一,因此需要熟练快速掌握其技巧. git安装: windwos:  [原创]Windows平台下Git的安装与配置 Ubuntu:git与github在ubun ...

  2. KSOA单据保护表中Clientid解析为mac和ip

    SELECT DISTINCT a.*,ISNULL(c.client_net_address,'') AS client_net_address FROM ( SELECT * ,),,) ) ), ...

  3. hdu 6315 Naive Operations (2018 Multi-University Training Contest 2 1007)

    Naive Operations Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 502768/502768 K (Java/Other ...

  4. 【刷题】BZOJ 1924 [Sdoi2010]所驼门王的宝藏

    Description Input 第一行给出三个正整数 N, R, C. 以下 N 行,每行给出一扇传送门的信息,包含三个正整数xi, yi, Ti,表示该传送门设在位于第 xi行第yi列的藏宝宫室 ...

  5. 洛谷P3613 睡觉困难综合征(LCT,贪心)

    洛谷题目传送门 膜拜神犇出题人管理员!!膜拜yler和ZSY!! 没错yler连续教我这个蒟蒻写起床困难综合症和睡觉困难综合症%%%Orz,所以按位贪心的思路可以继承下来 这里最好还是写树剖吧,不过我 ...

  6. IntelliJ IDEA 创建Java Web项目

    1. 创建Web项目 可以先阅读 IntelliJ IDEA 的安装和使用教程 注意:IntelliJ IDEA 中 Project 和 Module 的概念及区别 创建完成后点击Import Cha ...

  7. 【51nod1073】约瑟夫环1

    题目大意:给定 \(N\) 个人围成一个圈,每隔 \(M\) 个人杀一个,求最后活着的人的编号. 题解:环会涉及模运算,所以先将 \(1 \rightarrow N\) 映射为 \(0 \righta ...

  8. (转)面向对象——UML类图设计

    背景:一直以来,对UMl类图的画法不甚理解,但是随着学习的深入,发现熟练掌握UML类图,能够更好理解代码间的逻辑性,而这也是程序设计的基础所在,所以很有必要把UML好好掌握. UML类图新手入门级介绍 ...

  9. 基础知识--:before伪元素和:after伪元素

    http://book.51cto.com/art/201108/285688.htm 3.7  替换指定位置 大家都知道before和after是前.后的意思.但是奇怪的是,CSS中的:before ...

  10. mysql复杂查询(一)

    所谓复杂查询,指涉及多个表.具有嵌套等复杂结构的查询.这里简要介绍典型的几种复杂查询格式. 一.连接查询 连接是区别关系与非关系系统的最重要的标志.通过连接运算符可以实现多个表查询.连接查询主要包括内 ...