Luogu1641 SCOI2010生成字符串(组合数学)
NOI2018冒泡排序的一个子问题。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define P 20100403
#define N 2000010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,fac[N],inv[N];
int C(int n,int m){return 1ll*fac[n]*inv[m]%P*inv[n-m]%P;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("1641.in","r",stdin);
freopen("1641.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
fac[]=;for (int i=;i<=n+m;i++) fac[i]=1ll*fac[i-]*i%P;
inv[]=inv[]=;for (int i=;i<=n+m;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
for (int i=;i<=n+m;i++) inv[i]=1ll*inv[i-]*inv[i]%P;
cout<<(C(n+m,m)-C(n+m,m-)+P)%P;
return ;
}
Luogu1641 SCOI2010生成字符串(组合数学)的更多相关文章
- Luogu P1641 [SCOI2010]生成字符串 组合数学
神仙.... 当时以为是,$x$代表$1$,$y$代表$0$,所以不能过$y=x$的路径数...结果不会... 然后康题解...ヾ(。`Д´。)竟然向右上是$1$,向右下是$0$.... 所以现在就是 ...
- [SCOI2010]生成字符串 题解(卡特兰数的扩展)
[SCOI2010]生成字符串 Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数 ...
- P1641 [SCOI2010]生成字符串
P1641 [SCOI2010]生成字符串 题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不 ...
- 卡特兰数 洛谷P1641 [SCOI2010]生成字符串
卡特兰数 参考博客 介绍 卡特兰数为组合数学中的一种特殊数列,用于解决一类特殊问题 设\(f(n)\)为卡特兰数的第n项 其通项公式为 \[f(n)=\frac{2n\choose n}{n+1} \ ...
- [SCOI2010]生成字符串
题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足 ...
- BZOJ1856 [SCOI2010]生成字符串 【组合数】
题目 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足要求 ...
- BZOJ1856或洛谷1641 [SCOI2010]生成字符串
BZOJ原题链接 洛谷原题链接 可以将\(1\)和\(0\)的个数和看成是\(x\)轴坐标,个数差看成\(y\)轴坐标. 向右上角走,即\(x\)轴坐标\(+1\),\(y\)轴坐标\(+1\),表示 ...
- Luogu 1641[SCOI2010]生成字符串 - 卡特兰数
Description 有$N$ 个 $1$ 和 $M$ 个 $0$ 组成的字符串, 满足前 $k$ 个字符中 $1$ 的个数不少于 $0$ 的个数. 求这样字符串的个数. $1<=M < ...
- 【[SCOI2010]生成字符串】
\(n=m\)时候经典的卡特兰 那\(n!=m\)呢,还是按照卡特兰的方式来推 首先总情况数就是\(\binom{n+m}{n}\),在\(n+m\)个里选择\(n\)个\(1\) 显然有不合法的情况 ...
随机推荐
- C. Sad powers
You're given Q queries of the form (L, R). For each query you have to find the number of such x that ...
- BiCMOS技术
BiCMOS技术 编辑 本词条由“科普中国”百科科学词条编写与应用工作项目 审核 . 把双极型晶体管(BJT)和CMOS器件同时集成在同一块芯片上的新型的工艺技术,它集中了上述单.双极型器件的优点,两 ...
- NYOJ 35 表达式求值
一个模板了 哈哈. 这题由于已经包括了整形.浮点形了,以后也不须要特别处理了. /* 这里主要是逆波兰式的实现,使用两个stack 这里用字符串来模拟一个stack,第一步,将中缀表达式转变为后缀表达 ...
- c# speech 文本转语言
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.W ...
- Django Rest Framework源码剖析(二)-----权限
一.简介 在上一篇博客中已经介绍了django rest framework 对于认证的源码流程,以及实现过程,当用户经过认证之后下一步就是涉及到权限的问题.比如订单的业务只能VIP才能查看,所以这时 ...
- 20155202《网络对抗》Exp9 web安全基础实践
20155202<网络对抗>Exp9 web安全基础实践 实验前回答问题 (1)SQL注入攻击原理,如何防御 SQL注入产生的原因,和栈溢出.XSS等很多其他的攻击方法类似,就是未经检查或 ...
- 20155210 EXP6 信息搜集与漏洞扫描
20155210 EXP6 信息搜集与漏洞扫描 信息搜集 外围信息搜集 通过DNS和IP挖掘目标网站的信息 whois 域名注册信息查询 我们通过输入whois qq.com可查询到3R注册信息,包括 ...
- 20155307《网络对抗》Web安全基础实践
20155307<网络对抗>Web安全基础实践 基础问题回答 SQL注入攻击原理,如何防御? 原理:SQL注入攻击指的是通过构建特殊的输入作为参数传入Web应用程序,而这些输入大都是SQL ...
- HQL语句的3个小技巧
1.巧用new map 在查询表中部分字段的值时,我们可以用map来封装这些字段的值,可以提高查询效率,而且查出数据也更小,传输到页面的速度也更快. 如:查询角色时,我们只想要 id, ...
- Servlet——提交表单信息,Servlet之间的跳转
HTML表单标签:<form></form> 属性: actoion: 提交到的地址,默认为当前页面 method: 表单提交方式 有get和post两种方式,默认为get ...