类似于平面最近点对,考虑分治,即分别计算分割线两侧的最小三角形再考虑跨过线的三角形。

  复杂度证明也是类似的,对于某一个点,在另一侧可能与其构成最小三角形的点在一个d*d/2的矩形内(两边之和大于第三边),并且这些点所组成的三角形周长均不小于d。然而并不清楚这里至多会有多少个点,vfk曾说上界是16,我当然不会证明这个上界也构造不出来有这么多点的方案。找这些点的时候归并就可以做到线性。那么复杂度是O(nlogn)乘上枚举这些点的常数2*16*15/2,看起来根本跑不动不过这个上界肯定是特别松的所以一点也不虚。

  算距离的时候会爆int。以及luogu数据疑似有锅。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 200010
#define inf 1000000000
int n;
double ans=inf;
struct data
{
int x,y;
bool operator <(const data&a) const
{
return x<a.x||x==a.x&&y<a.y;
}
double operator -(const data&a) const
{
return sqrt(1ll*(x-a.x)*(x-a.x)+1ll*(y-a.y)*(y-a.y));
}
}a[N],b[N],c[N];
void getans(data *b,data *c,int n,int m)
{
int s=,t=;
for (int i=;i<=n;i++)
{
while (s<=m&&c[s].y+ans/<b[i].y) s++;
while (t<m&&c[t+].y-ans/<b[i].y) t++;
for (int j=s;j<t;j++)
{
double tot=b[i]-c[j];
for (int k=j+;k<=t;k++)
ans=min(ans,tot+(c[k]-b[i])+(c[k]-c[j]));
}
}
}
void solve(int l,int r)
{
if (l==r) return;
int mid=l+r>>;
solve(l,mid);
solve(mid+,r);
int n=,m=,MID=-inf;
for (int i=l;i<=mid;i++) MID=max(MID,a[i].x);
for (int i=l;i<=mid;i++)
if (*(MID-a[i].x)<ans) b[++n]=a[i];
for (int i=mid+;i<=r;i++)
if (*(a[i].x-MID)<ans) c[++m]=a[i];
getans(b,c,n,m);
getans(c,b,m,n);
int i=l,j=mid+;
for (int k=l;k<=r;k++)
if (j>r||i<=mid&&a[i].y<a[j].y) b[k]=a[i++];
else b[k]=a[j++];
for (int k=l;k<=r;k++) a[k]=b[k];
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2458.in","r",stdin);
freopen("bzoj2458.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) a[i].x=read(),a[i].y=read();
sort(a+,a+n+);
solve(,n);
printf("%.6lf",ans);
return ;
}

BZOJ2458 Beijing2011最小三角形(分治)的更多相关文章

  1. [BZOJ2458][BeiJing2011]最小三角形(分治)

    求平面上n个点组成的周长最小的三角形. 回忆平面最近点对的做法,找到横坐标的中点mid分治到两边,合并时考虑离mid横坐标不超过当前最小值d的所有点,按y排序后暴力更新答案. 这个题也一样,先分治到两 ...

  2. bzoj2458: [BeiJing2011]最小三角形(分治+几何)

    题目链接:bzoj2458: [BeiJing2011]最小三角形 学习推荐博客:分治法编程问题之最接近点对问题的算法分析 题解:先将所有点按x值排列,然后每次将当前区间[l,r]分成左右两半递归求解 ...

  3. 分治 - 计算几何 - BZOJ2458,[BeiJing2011]最小三角形

    http://www.lydsy.com/JudgeOnline/problem.php?id=2458 [BeiJing2011]最小三角形 描述 Frisk现在遇到了一个有趣的问题. 平面上有N个 ...

  4. BZOJ2458: [BeiJing2011]最小三角形

    类似分治最近点对的方法乱搞一下就行. #include<bits/stdc++.h> #define N 200010 #define M (s+t>>1) using nam ...

  5. BZOJ 2458: [BeiJing2011]最小三角形 (分治)

    分治就是了. 类似于分治找最近/远点对. CODE #include <bits/stdc++.h> using namespace std; const double eps = 1e- ...

  6. bzoj-2458 2458: [BeiJing2011]最小三角形(计算几何+分治)

    题目链接: 2458: [BeiJing2011]最小三角形 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1101  Solved: 380 Des ...

  7. bzoj 2458: [BeiJing2011]最小三角形 题解

    [前言]话说好久没有写题解了.到暑假了反而忙.o(╯□╰)o [原题] 2458: [BeiJing2011]最小三角形 Time Limit: 10 Sec  Memory Limit: 128 M ...

  8. BZOJ 2458: [BeiJing2011]最小三角形 | 平面分治

    题目: 给出若干个点 求三个点构成的周长最小的三角形的周长(我们认为共线的三点也算三角形) 题解: 可以参考平面最近点对的做法 只不过合并的时候改成枚举三个点更新周长最小值,其他的和最近点对大同小异 ...

  9. [BZOJ]2458: [BeiJing2011]最小三角形

    题目大意:给出平面上n个点,求最小的由这些点组成的三角形的周长.(N<=200,000) 思路:点按x坐标排序后分治,每次取出与排在中间的点的横坐标相差不超当前答案一半的点,按y坐标排序后再暴力 ...

随机推荐

  1. Arduino入门笔记(4):用蜂鸣器演奏音乐并配有LED闪烁

    转载请注明:@小五义 http://www.cnblogs.com/xiaowuyi 欢迎加入讨论群 64770604 一.本次实验所需器材 1.Arduino板 https://item.taoba ...

  2. SS、SP、BP寄存器

    SS, SP, BP 三个寄存器 SS:存放栈的段地址: SP:堆栈寄存器SP(stack pointer)存放栈的偏移地址; BP: 基数指针寄存器BP(base pointer)是一个寄存器,它的 ...

  3. Json.NET如何避免循环引用

    Json.NET在将对象序列化为Json字符串的时候,如果对象有循环引用的属性或字段,那么会导致Json.NET抛出循环引用异常. 有两种方法可以解决这个问题: 1.在对象循环引用的属性上打上[Jso ...

  4. MySQL学习笔记04 插入中文时出现ERROR 1366 (HY000)

    1 环境: MySQL Server 6.0  命令行工具 2 问题 :  插入中文字符数据出现如下错误: ERROR 1366 (HY000): Incorrect string value: '\ ...

  5. 十万的License只取决于一个连接

    前段时间看到一份代码,小规模.低难度的一个应用,MVC用到极致,业务逻辑却混成一团麻,应该是中了培训班的毒.现在的程序员,大多是没仔细读过<现代操作系统>,没看过编译原理,不知道堆与栈,没 ...

  6. 带Alpha通道的色彩叠加问题

    css3的rgba色彩模式.png/gif图片的alpha通道.canvas的rgba色彩模式.css3的阴影.css3的opacity属性等等,这些应用在网页中,有意无意间,我们的页面多了许多半透明 ...

  7. Ubuntu 守护进程

    项目中用的Qt开发的GUI程序,需要随机自启动. 最初尝试过使用SuperVisor,但是会出现下面的错误. qt.qpa.screen: QXcbConnection: Could not conn ...

  8. Spring Boot(七):Mybatis 多数据源最简解决方案

    说起多数据源,一般都来解决那些问题呢,主从模式或者业务比较复杂需要连接不同的分库来支持业务.我们遇到的情况是后者,网上找了很多,大都是根据 Jpa 来做多数据源解决方案,要不就是老的 Spring 多 ...

  9. vue JointJS 实例demo

    前言 越来越发现,前端深入好难哦!虐成渣渣了. 需求:前端绘制灵活的关系图(此demo还是简单的,我的需求才跨出一小步) 安装 npm install jointjs 容器,工具栏 <templ ...

  10. 设计模式 笔记 责任链模式 chain of responsibility

    //---------------------------15/04/25---------------------------- //Chain of responsibility 责任链----- ...