题面

$ solution: $

这道题主要难在考场上能否想到这个思路(即如何设置状态)(像我这样的蒟蒻就想不到呀QAQ)不过这一题确实很神奇!

$ f[i][j]: $ 表示第 $ a_i $ 个数比第 $ a_j $ 个数大的几率,这样设置状态比较好转移:对于每一次 $ a_i $ 与 $ a_j $ 的交换,他只会影响到序列里,每一个数与 $ a_i $ , $ a_j $ 的胜率(一共有 $ n $ 次交换,只要每次交换复杂度在 $ O(n) $ 级别这道题就解决了了)。而且我们不难发现转移时每一个数与 $ a_i $ , $ a_j $ 胜率的修改是 $ O(1) $ 的:

  1. $ f[i][j]=(f[i][j]+f[j][i])\times 0.5 $
  2. $ f[j][i]=(f[i][j]+f[j][i])\times 0.5 $

所以把数列中每一位修改后复杂度刚好为 $ O(n) $ 级别,满足要求!

$ code: $

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set> #define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int using namespace std; int n,m;
int a[1001];
db ans,f[1001][1001]; inline int qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
} int main(){
//freopen("inversion.in","r",stdin);
//freopen("inversion.out","w",stdout);
n=qr(),m=qr();
for(rg i=1;i<=n;++i)a[i]=qr();
for(rg i=1;i<=n;++i)
for(rg j=i+1;j<=n;++j){
if(a[i]>a[j])f[i][j]=1;
if(a[j]>a[i])f[j][i]=1;
}
for(rg k=1,i,j;k<=m;++k){
i=qr(),j=qr();
for(rg k=1;k<=n;++k){
if(i!=k&&j!=k){
f[k][i]=f[k][j]=(f[k][i]+f[k][j])*0.5;
f[i][k]=f[j][k]=(f[j][k]+f[i][k])*0.5;
}
}f[i][j]=f[j][i]=(f[i][j]+f[j][i])*0.5;
}
for(rg i=1;i<=n;++i)
for(rg j=i+1;j<=n;++j)
ans+=f[i][j];
printf("%.8lf",ans);
return 0;
}

CF258D Little Elephant and Broken Sorting (带技巧的DP)的更多相关文章

  1. CF258D Little Elephant and Broken Sorting/AGC030D Inversion Sum 期望、DP

    传送门--Codeforces 传送门--Atcoder 考虑逆序对的产生条件,是存在两个数\(i,j\)满足\(i < j,a_i > a_j\) 故设\(dp_{i,j}\)表示\(a ...

  2. CodeForces 258D Little Elephant and Broken Sorting(期望)

    CF258D Little Elephant and Broken Sorting 题意 题意翻译 有一个\(1\sim n\)的排列,会进行\(m\)次操作,操作为交换\(a,b\).每次操作都有\ ...

  3. Codeforces 258D Little Elephant and Broken Sorting (看题解) 概率dp

    Little Elephant and Broken Sorting 怎么感觉这个状态好难想到啊.. dp[ i ][ j ]表示第 i 个数字比第 j 个数字大的概率.转移好像比较显然. #incl ...

  4. CF 258 D. Little Elephant and Broken Sorting

    D. Little Elephant and Broken Sorting 链接 题意: 长度为n的序列,m次操作,每次交换两个位置,每次操作的概率为$\frac{1}{2}$,求m此操作后逆序对的期 ...

  5. CodeForces - 258D Little Elephant and Broken Sorting

    Discription The Little Elephant loves permutations of integers from 1 to n very much. But most of al ...

  6. CodeForces - 258D:Little Elephant and Broken Sorting(概率DP)

    题意:长度为n的排列,m次交换xi, yi,每个交换x,y有50%的概率不发生,问逆序数的期望  .n, m <= 1000 思路:我们只用维护大小关系,dp[i][j]表示位置i的数比位置j的 ...

  7. [ZJOI2012]波浪弱化版(带技巧的DP)

    题面 \(solution:\) 这道确实挺难的,情况特别多,而且考场上都没想到如何设置状态.感觉怎么设状态不能很好的表示当前情况并转移,考后发现是对全排列的构造方式不熟而导致的,而这一题的状态也是根 ...

  8. CF293B 方格(带技巧的搜索)

    solution: 首先我们根据一条路径上不能有两个相同颜色的格子可以得出: 对于两个格子 \((x_1 , y_1 )\) 和 \((x_2 , y_2 )\) 必须满足: \(x_1<x_2 ...

  9. HDU 6351 (带技巧的暴力)

    题意:给定一个数,和一个最多交换次数k,问在不超过k次操作的情况,问可以得到的最大值和最小值是多少? 个人解题的艰辛路程 , 开始是想到了暴力枚举的可能 , 打出来发现在判断枚举的数组与原来数组交换了 ...

随机推荐

  1. dijkstra算法计算最短路径和并输出最短路径

    void dijisitela(int d, int m1) { ], book[], path[], u, v, min; l = ; ; i < n1; i++) { dis[i] = w[ ...

  2. Linux命令(二) 复制文件 cp

    cp命令用来复制文件或目录,当复制多个文件时,目标文件参数必须为已经存在的目录,否则将出现错误. cp命令默认不能复制目录,复制目录必须使用 -R 选项.cp命令具备了 ln命令的功能. 命令格式: ...

  3. [转帖]Linux系统/dev/mapper目录浅谈

    Linux系统/dev/mapper目录浅谈   Linux系统的一般的文件系统名称类似于/dev/sda1或/dev/hda1,但是今天在进行系统维护的时候,利用df -h 命令敲出了/dev/ma ...

  4. K8S 创建rc 时 不适用本地镜像的解决办法

    spec: containers: - name: nginx image: image: reg.docker.lc/share/nginx:latest imagePullPolicy: IfNo ...

  5. Android dimen

    转自:Android:dimen尺寸资源文件的使用 dimen.xml在values文件夹下面 <resources> <!-- Default screen margins, pe ...

  6. API接口重复提交

    重复提交的几种情况1.利用JavaScript防止表单重复提交 按钮禁用2.利用Session令牌防止表单重复提交 具体的做法:在服务器端生成一个唯一的随机标识号,专业术语称为Token(令牌),同时 ...

  7. BZOJ2326 HNOI2011数学作业(矩阵快速幂)

    考虑暴力,那么有f(n)=(f(n-1)*10digit+n)%m.注意到每次转移是类似的,考虑矩阵快速幂.首先对于位数不同的数字分开处理,显然这只有log种.然后就得到了f(n)=a·f(n-1)+ ...

  8. Day24-KindEditor基本使用和文件操作2

    KindEditor是一套开源的HTML可视化编辑器,主要用于让用户在网站上获得所见即所得编辑效果,兼容IE.Firefox.Chrome.Safari.Opera等主流浏览器. 1. 准备 2. 写 ...

  9. 【刷题】BZOJ 4254 Aerial Tramway

    Description You own a park located on a mountain, which can be described as a sequence of n points ( ...

  10. 【题解】 [HNOI2009] 最小圈 (01分数规划,二分答案,负环)

    题目背景 如果你能提供题面或者题意简述,请直接在讨论区发帖,感谢你的贡献. 题目描述 对于一张有向图,要你求图中最小圈的平均值最小是多少,即若一个圈经过k个节点,那么一个圈的平均值为圈上k条边权的和除 ...