题面

$ solution: $

这道题主要难在考场上能否想到这个思路(即如何设置状态)(像我这样的蒟蒻就想不到呀QAQ)不过这一题确实很神奇!

$ f[i][j]: $ 表示第 $ a_i $ 个数比第 $ a_j $ 个数大的几率,这样设置状态比较好转移:对于每一次 $ a_i $ 与 $ a_j $ 的交换,他只会影响到序列里,每一个数与 $ a_i $ , $ a_j $ 的胜率(一共有 $ n $ 次交换,只要每次交换复杂度在 $ O(n) $ 级别这道题就解决了了)。而且我们不难发现转移时每一个数与 $ a_i $ , $ a_j $ 胜率的修改是 $ O(1) $ 的:

  1. $ f[i][j]=(f[i][j]+f[j][i])\times 0.5 $
  2. $ f[j][i]=(f[i][j]+f[j][i])\times 0.5 $

所以把数列中每一位修改后复杂度刚好为 $ O(n) $ 级别,满足要求!

$ code: $

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set> #define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int using namespace std; int n,m;
int a[1001];
db ans,f[1001][1001]; inline int qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
} int main(){
//freopen("inversion.in","r",stdin);
//freopen("inversion.out","w",stdout);
n=qr(),m=qr();
for(rg i=1;i<=n;++i)a[i]=qr();
for(rg i=1;i<=n;++i)
for(rg j=i+1;j<=n;++j){
if(a[i]>a[j])f[i][j]=1;
if(a[j]>a[i])f[j][i]=1;
}
for(rg k=1,i,j;k<=m;++k){
i=qr(),j=qr();
for(rg k=1;k<=n;++k){
if(i!=k&&j!=k){
f[k][i]=f[k][j]=(f[k][i]+f[k][j])*0.5;
f[i][k]=f[j][k]=(f[j][k]+f[i][k])*0.5;
}
}f[i][j]=f[j][i]=(f[i][j]+f[j][i])*0.5;
}
for(rg i=1;i<=n;++i)
for(rg j=i+1;j<=n;++j)
ans+=f[i][j];
printf("%.8lf",ans);
return 0;
}

CF258D Little Elephant and Broken Sorting (带技巧的DP)的更多相关文章

  1. CF258D Little Elephant and Broken Sorting/AGC030D Inversion Sum 期望、DP

    传送门--Codeforces 传送门--Atcoder 考虑逆序对的产生条件,是存在两个数\(i,j\)满足\(i < j,a_i > a_j\) 故设\(dp_{i,j}\)表示\(a ...

  2. CodeForces 258D Little Elephant and Broken Sorting(期望)

    CF258D Little Elephant and Broken Sorting 题意 题意翻译 有一个\(1\sim n\)的排列,会进行\(m\)次操作,操作为交换\(a,b\).每次操作都有\ ...

  3. Codeforces 258D Little Elephant and Broken Sorting (看题解) 概率dp

    Little Elephant and Broken Sorting 怎么感觉这个状态好难想到啊.. dp[ i ][ j ]表示第 i 个数字比第 j 个数字大的概率.转移好像比较显然. #incl ...

  4. CF 258 D. Little Elephant and Broken Sorting

    D. Little Elephant and Broken Sorting 链接 题意: 长度为n的序列,m次操作,每次交换两个位置,每次操作的概率为$\frac{1}{2}$,求m此操作后逆序对的期 ...

  5. CodeForces - 258D Little Elephant and Broken Sorting

    Discription The Little Elephant loves permutations of integers from 1 to n very much. But most of al ...

  6. CodeForces - 258D:Little Elephant and Broken Sorting(概率DP)

    题意:长度为n的排列,m次交换xi, yi,每个交换x,y有50%的概率不发生,问逆序数的期望  .n, m <= 1000 思路:我们只用维护大小关系,dp[i][j]表示位置i的数比位置j的 ...

  7. [ZJOI2012]波浪弱化版(带技巧的DP)

    题面 \(solution:\) 这道确实挺难的,情况特别多,而且考场上都没想到如何设置状态.感觉怎么设状态不能很好的表示当前情况并转移,考后发现是对全排列的构造方式不熟而导致的,而这一题的状态也是根 ...

  8. CF293B 方格(带技巧的搜索)

    solution: 首先我们根据一条路径上不能有两个相同颜色的格子可以得出: 对于两个格子 \((x_1 , y_1 )\) 和 \((x_2 , y_2 )\) 必须满足: \(x_1<x_2 ...

  9. HDU 6351 (带技巧的暴力)

    题意:给定一个数,和一个最多交换次数k,问在不超过k次操作的情况,问可以得到的最大值和最小值是多少? 个人解题的艰辛路程 , 开始是想到了暴力枚举的可能 , 打出来发现在判断枚举的数组与原来数组交换了 ...

随机推荐

  1. PHP学习 安装环境和语法学习

    要回归技术了,昨天下午专门去深圳大学城图书馆借书,甚是漂亮 禁不住搞了几张照片 在图书馆里面的书真多,图书馆环境真好,清华大学 北京大学研究生院的学生们有福了,最后一句深圳政府真尼玛有钱,下图是图书馆 ...

  2. PAT甲题题解-1077. Kuchiguse (20)-找相同后缀

    #include <iostream> #include <cstdio> #include <algorithm> #include <string.h&g ...

  3. PAT甲题题解-1112. Stucked Keyboard (20)-(map应用)

    题意:给定一个k,键盘里有些键盘卡住了,按一次会打出k次,要求找出可能的坏键,按发现的顺序输出,并且输出正确的字符串顺序. map<char,int>用来标记一个键是否为坏键,一开始的时候 ...

  4. Fibbing以让虚结点的设置更简单为目的优化网络需求

  5. DPDK环境搭建及Helloworld样例

    配置虚拟机环境 多张网卡,一张网卡是无法运行DPDK的,至少要两张. 多核CPU,可以在实现多个DPDK逻辑调度核lcore. DPDK依赖参考:http://www.cnblogs.com/vanc ...

  6. 基于RYU restful api实现的VLAN网络虚拟化

    基于RYU restful api实现的VLAN网络虚拟化 前言 本次实验是基于OVS的VLAN虚拟化简易实践方案的进一步的实验,采用RYU restful api进行配置.本质上和上次实验没什么差, ...

  7. Spark 实践——基于 Spark MLlib 和 YFCC 100M 数据集的景点推荐系统

    1.前言 上接 YFCC 100M数据集分析笔记 和 使用百度地图api可视化聚类结果, 在对 YFCC 100M 聚类出的景点信息的基础上,使用 Spark MLlib 提供的 ALS 算法构建推荐 ...

  8. VS2013的安装与测试

    第一步:下载完成之后点击安装,在安装过程中会出现很多选择,选择社区版(c++),安装完成: 第二步:安装完成之后打开VS2013,如图所示:   第三步:按以下步骤进行 第四步:点击[OK]之后 第五 ...

  9. [转帖] sparkdev 的 博客 systemd

    从 init 系统说起 https://www.cnblogs.com/sparkdev/p/8448237.html systemd的内容 需要学习下. linux 操作系统的启动首先从 BIOS ...

  10. Java之流的分类

    Java I/O流分类: