Divisibility
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 9476   Accepted: 3300

Description

Consider an arbitrary sequence of integers. One can place + or - operators between integers in the sequence, thus deriving different arithmetical expressions that evaluate to different values. Let us, for example, take the sequence: 17, 5, -21, 15. There are eight possible expressions: 17 + 5 + -21 + 15 = 16 
17 + 5 + -21 - 15 = -14 
17 + 5 - -21 + 15 = 58 
17 + 5 - -21 - 15 = 28 
17 - 5 + -21 + 15 = 6 
17 - 5 + -21 - 15 = -24 
17 - 5 - -21 + 15 = 48 
17 - 5 - -21 - 15 = 18 
We call the sequence of integers divisible by K if + or - operators can be placed between integers in the sequence in such way that resulting value is divisible by K. In the above example, the sequence is divisible by 7 (17+5+-21-15=-14) but is not divisible by 5.

You are to write a program that will determine divisibility of sequence of integers.

Input

The first line of the input file contains two integers, N and K (1 <= N <= 10000, 2 <= K <= 100) separated by a space. 
The second line contains a sequence of N integers separated by spaces. Each integer is not greater than 10000 by it's absolute value. 

Output

Write to the output file the word "Divisible" if given sequence of integers is divisible by K or "Not divisible" if it's not.

Sample Input

4 7
17 5 -21 15

Sample Output

Divisible
#include <stdio.h>
#include <iostream>
using namespace std; int dp[][] = {};
int num[] = {}; int main()
{
int k, n;
scanf("%d%d", &n, &k);
for (int i = ; i < n; i++)
{
scanf("%d", &num[i]);
if (num[i] < )
{
num[i] *= -;
}
num[i] = num[i] % k;
}
dp[][num[]] = ;
for (int i = ; i < n; i++)
{
for (int j = ; j <= k; j++)
{
if (dp[i - ][j])
{
dp[i][(j + num[i]) % k] = ;
dp[i][(k + j - num[i]) % k] = ;
}
}
}
if(dp[n-][])
{
printf("Divisible\n");
}
else
{
printf("Not divisible\n");
}
return ;
}

POJ 1745 Divisibility的更多相关文章

  1. POJ 1745 Divisibility (线性dp)

    Divisibility Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10598   Accepted: 3787 Des ...

  2. POJ 1745 Divisibility DP

    POJ:http://poj.org/problem?id=1745 A完这题去买福鼎肉片,和舍友去买滴~舍友感慨"这一天可以卖好几百份,每份就算赚一块钱..那么一个月..一年...&quo ...

  3. POJ 1745 Divisibility【DP】

    题意:给出n,k,n个数,在这n个数之间任意放置+,-号,称得到的等式的值能够整除k则为可划分的,否则为不可划分的. 自己想的是枚举,将所有得到的等式的和算出来,再判断它是否能够整除k,可是有1000 ...

  4. POJ 1745 【0/1 背包】

    题目链接:http://poj.org/problem?id=1745 Divisibility Time Limit: 1000MS   Memory Limit: 10000K Total Sub ...

  5. POJ 1745 线性和差取余判断

    POJ 1745 线性和差取余判断 题目大意:每个数都必须取到,相加或相减去,问所有的方案最后的得数中有没有一个方案可以整除k 这个题目的难点在于dp数组的安排上面 其实也就是手动模仿了一下 比如 一 ...

  6. POJ 1745:Divisibility 枚举某一状态的DP

    Divisibility Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11001   Accepted: 3933 Des ...

  7. [POJ 1745] Divisbility

    [题目链接] http://poj.org/problem?id=1745 [算法] DP [代码] #include <algorithm> #include <bitset> ...

  8. 1745 Divisibility

    Divisibility Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 14084 Accepted: 4989 Descrip ...

  9. POJ 1745

    #include <iostream> #define MAXN 10005 using namespace std; int _m[MAXN]; ]; int main() { //fr ...

随机推荐

  1. 如何加快HTML页面加载速度

    1. 页面减肥 a. 页面的肥瘦是影响加载速度最重要的因素. b. 删除不必要的空格.注释. c. 将inline的script和css移到外部文件. d. 可以使用HTML Tidy来给HTML减肥 ...

  2. Scanner-String-StringBuilder-API

    1.能够明确API的使用步骤     1)打开帮助文档     2)点击显示,找到索引,看到输入框     3)你要找谁?在输入框里输入,然后回车     4)看包:java.lang下的类不需 ...

  3. Jquery AJAX使用踩坑小记

    在使用jquery ajax时,如果其参数是一个json对象,将此参数使用$('#dd').data(param)绑定到一个元素上, 在使用$('#dd').bind('click',function ...

  4. Visual SVN IIS反向代理设置

    需要解决的问题: 1. 设置反向代理 2. 解决部分后缀文件无法提交的问题 1. 设置反向代理 接收所有的URL 允许所有的HTTP_HOST 跳转到被代理的服务器 2. 允许所有后缀的文件访问IIS ...

  5. LINUX提高openfire并发数(网上收集)

    谷歌博客地址:http://tsaiquinn.blogspot.com/2014/10/linuxopenfire.html 影响连接数的元素包含三种:1)Linux的系统参数2)进程自身可以创建的 ...

  6. 微信程序开发系列教程(四)使用微信API创建公众号自定义菜单

    大家可能经常看到一些微信公众号具有功能强大的自定义菜单,点击之后可以访问很多有用的功能. 这篇教程就教大家如何动手做一做. 这个教程最后实现的效果是:创建一个一级菜单"UI5", ...

  7. Words Prefixed Trans-

    transit v. Pass across or through (an area) The new large ships will be too big to transit the Panam ...

  8. UVA 10817 - Headmaster's Headache(三进制状压dp)

    题目:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=20&pag ...

  9. Solr版本安装部署指南

    一.依赖包 1.  JDK 1.6以上 2.  solr-4.3.0.tgz 3.  Tomcat或者jetty(注意,solr包中本身就含有jetty的启动相关内容):apache-tomcat-7 ...

  10. softmax_loss的归一化问题

    cnn网络中,网络更新一次参数是根据loss反向传播来,这个loss是一个batch_size的图像前向传播得到的loss和除以batch_size大小得到的平均loss. softmax_loss前 ...