Lecture 1
Principles of GIS( UNSW Metternicht )
outline:data input---data management---data manipulation+data analysis---spatial modelling
Definition
1. GIS is a tool to digitally abstract the real world, information is connected to its physical location and organized into layers.
2. a GIS consists at least information database( with attribute ), map information, computer-based link between them.
GIS storement
1. people manage database information by layer or theme
2. a value can be a number or a text
type of data( vector矢量 raster栅格)
1. spatial data (空间数据): has location information, giving the information about where is it, can be mapped, spatial data models begin with conceptualization, how you will represent the real world phenomena or entities( road, river, etc.), which is the objects in a spatial database plus the relationships among them.
2. attribute data: giving the information about what is it.
3. topology(拓扑): what related to this feature
attribute data
1. nominal attributes: provide descriptive information about an object (for example, colors、city names or vegetation type), which can also be images, audios or other kinds of descriptive information.
2. ordinal attributes: imply rank order or scale by their values ( for example, small、medium、large, ranking from 1 to 10 ).
3. interval or ratio attributes: are used for numeric items where both order and difference in magnitudes( 量级 ) are reflected in number( real number in a linear scale, for example: height、weight, etc.)
data model concept
1. vector data model: discrete objects (point,lines)
2. raster data model: continuous phenomena (use grid cells)
vector data model
1. point: to represent the location
2. line: to represent linear features
3. polygon: represents entities which covers an area
raster data model (cells)
rasters are digital aerial photographs, imagery from satellites, digital pictures, or even scanned maps
TIN data model---tesselations (Triangulated Irregular Network)
1. TIN is a data model commonly used to represent terrain (地势) heights, which will be describes as x,y, and z locations.
2. TIN used for digital elevation models (DEM) or digital terrain models (DTM).
vector data
1. can be multipart
2. polygons can have holes
3. holes can contain islands
4. can overlap
vector model
the direction of a line is determined by the order of its vertices (制高点)
polygon exteriors (外观) are stored in an anticlockwise(逆时针) order
顺时针方向为内孔方向(Internal holes)
total area of the polygon areas is the sum of the part areas
raster data
a cell’s coordinate is inferred from its file order, the cell size and corner coordinates (坐标)
nodata means the value is not known or is not relevant
Lecture 1的更多相关文章
- [C2P3] Andrew Ng - Machine Learning
##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...
- note of introduction of Algorithms(Lecture 3 - Part1)
Lecture 3(part 1) Divide and conquer 1. the general paradim of algrithm as bellow: 1. divide the pro ...
- codeforces 499B.Lecture 解题报告
题目链接:http://codeforces.com/problemset/problem/499/B 题目意思:给出两种语言下 m 个单词表(word1, word2)的一一对应,以及 profes ...
- Nobel Lecture, December 12, 1929 Thermionic phenomena and the laws which govern them
http://www.nobelprize.org/nobel_prizes/physics/laureates/1928/richardson-lecture.pdf OWEN W. RICHARD ...
- Jordan Lecture Note-1: Introduction
Jordan Lecture Note-1: Introduction 第一部分要整理的是Jordan的讲义,这份讲义是我刚进实验室时我们老师给我的第一个任务,要求我把讲义上的知识扩充出去,然后每周都 ...
- Jordan Lecture Note-3: 梯度投影法
Jordan Lecture Note-3:梯度投影法 在这一节,我们介绍如何用梯度投影法来解如下的优化问题: \begin{align} \mathop{\min}&\quad f(x)\n ...
- Jordan Lecture Note-2: Maximal Margin Classifier
Maximal Margin Classifier Logistic Regression 与 SVM 思路的不同点:logistic regression强调所有点尽可能远离中间的那条分割线,而SV ...
- [CF Round #294 div2] E. A and B and Lecture Rooms 【树上倍增】
题目链接:E. A and B and Lecture Rooms 题目大意 给定一颗节点数10^5的树,有10^5个询问,每次询问树上到xi, yi这两个点距离相等的点有多少个. 题目分析 若 x= ...
- Codeforces Round #287 D.The Maths Lecture
The Maths Lecture 题意:求存在后缀Si mod k =0,的n位数的数目.(n <=1000,k<=100); 用f[i][j]代表 长为i位,模k等于j的数的个数. 可 ...
- Lecture Halls
Lecture Halls (会议安排) 时间限制(普通/Java):1000MS/10000MS 运行内存限制:65536KByte 总提交: 38 测试通过: 2 ...
随机推荐
- 2017"百度之星"程序设计大赛 - 初赛(A)小C的倍数问题
Problem Description 根据小学数学的知识,我们知道一个正整数x是3的倍数的条件是x每一位加起来的和是3的倍数.反之,如果一个数每一位加起来是3的倍数,则这个数肯定是3的倍数. 现在给 ...
- Java中List,Set和Map详解及其区别和使用场景(转)
https://www.cnblogs.com/EasonJim/p/7967138.html
- myeclipse 最佳设置
http://www.cnblogs.com/wuyifu/p/3593035.html
- Spark Mllib里如何记录开始训练时间、完成训练时间、所需训练时间(图文详解)
不多说,直接上干货! 具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的第16章 朴素贝叶斯二元分类算法来预测分类StumbleUpon数据集
- spring assert 用法
spring在提供一个强大的应用开发框架的同时也提供了很多优秀的开发工具类,合理的运用这些工具,将有助于提高开发效率.增强代码质量.下面就最常用的Assert工具类,简要介绍一下它的用法.Assert ...
- cas 单点登录服务端客户端配置
首先,下载 cas-server-3.5.2-release http://pan.baidu.com/s/1GJ8Gs cas-client-3.2.1-release http://pan.bai ...
- SyntaxError: Use of const in strict mode.
具体报错console c:\Users\Administrator\WebstormProjects\blogtest\node_modules\connect-mongo\src\index.js ...
- springboot集成shiro实现权限缓存和记住我
到这节为止,我们已经实现了身份验证和权限验证.但是,如果我们登录之后多次访问http://localhost:8080/userInfo/userDel的话,会发现权限验证会每次都执行一次.这是有问题 ...
- ParallelsDesktop安装DOS7.1并与MAC共享文件
ParallelsDesktop安装DOS7.1并与MAC共享文件 Table of Contents 1. 在Parallels Desktop中安装DOS7.1 2. 配置与Mac共享文件 1 在 ...
- swift学习笔记3-4
再牛逼的梦想,也抵不住你傻逼似的坚持! 我跑啊跑啊,为的就是赶上那个被寄予厚望的自己. 三.运算符+表达式 swift允许重载运算符,比如 “+”你可以重载它 后续会详细介绍 赋值运算符 pass 算 ...