题目描述

输入

输出

一个整数表示联盟里所有球队收益之和的最小值。

样例输入

3 3
1 0 2 1
1 1 10 1
0 1 3 3
1 2
2 3
3 1

样例输出

43


题解

费用流

由于存在一个赢一个输,比较难算。我们可以先假设它们都输掉,然后再安排赢的情况。

设fi为i还要打的比赛数目,那么初始的收益为∑ci*wi^2+di*(li+fi)^2。

S->每场比赛,容量为1,费用为0。

每场比赛->比赛的两队,容量为1,费用为0。

因为费用的改变是包含平方的,所以我们需要拆边来做。

第i支队伍向T连fi条边,容量均为1,第j条边表示赢j场比赢j-1场多出来的收益,所以费用应为ci*(wi+j)^2+di*(wi+fi-j)^2-ci*(li+j-1)^2-di*(li+j+1)^2。

这里为了方便,直接把fi加到了li中。

然后跑最小费用最大流,加上之前的初始收益即为答案。

#include <cstdio>
#include <cstring>
#include <queue>
#define N 10010
#define M 3500000
using namespace std;
queue<int> q;
int w[N] , l[N] , c[N] , d[N] , x[N] , y[N] , f[N];
int head[N] , to[M] , val[M] , cost[M] , next[M] , cnt = 1 , s , t , dis[N] , from[N] , pre[N];
void add(int x , int y , int v , int c)
{
to[++cnt] = y , val[cnt] = v , cost[cnt] = c , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , cost[cnt] = -c , next[cnt] = head[y] , head[y] = cnt;
}
bool spfa()
{
int x , i;
memset(from , -1 , sizeof(from));
memset(dis , 0x3f , sizeof(dis));
dis[s] = 0 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
if(val[i] && dis[to[i]] > dis[x] + cost[i])
dis[to[i]] = dis[x] + cost[i] , from[to[i]] = x , pre[to[i]] = i , q.push(to[i]);
}
return ~from[t];
}
int mincost()
{
int i , k , ans = 0;
while(spfa())
{
k = 0x7fffffff;
for(i = t ; i != s ; i = from[i]) k = min(k , val[pre[i]]);
ans += k * dis[t];
for(i = t ; i != s ; i = from[i]) val[pre[i]] -= k , val[pre[i] ^ 1] += k;
}
return ans;
}
int main()
{
int n , m , i , j , ans = 0;
scanf("%d%d" , &n , &m) , s = 0 , t = m + n + 1;
for(i = 1 ; i <= n ; i ++ ) scanf("%d%d%d%d" , &w[i] , &l[i] , &c[i] , &d[i]);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d" , &x[i] , &y[i]) , f[x[i]] ++ , f[y[i]] ++ , l[x[i]] ++ , l[y[i]] ++ ;
for(i = 1 ; i <= n ; i ++ ) ans += c[i] * w[i] * w[i] + d[i] * l[i] * l[i];
for(i = 1 ; i <= m ; i ++ ) add(s , i , 1 , 0) , add(i , x[i] + m , 1 , 0) , add(i , y[i] + m , 1 , 0);
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= f[i] ; j ++ )
add(i + m , t , 1 , c[i] * (2 * w[i] + 2 * j - 1) - d[i] * (2 * l[i] - 2 * j + 1));
printf("%d\n" , ans + mincost());
return 0;
}

【bzoj1449/bzoj2895】[JSOI2009]球队收益/球队预算 费用流的更多相关文章

  1. 【BZOJ1449/2895】[JSOI2009]球队收益/球队预算 最小费用最大流

    [BZOJ2895]球队预算 Description 在一个篮球联赛里,有n支球队,球队的支出是和他们的胜负场次有关系的,具体来说,第i支球队的赛季总支出是Ci*x^2+Di*y^2,Di<=C ...

  2. 【BZOJ-1449&2895】球队收益&球队预算 最小费用最大流

    1449: [JSOI2009]球队收益 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 648  Solved: 364[Submit][Status][ ...

  3. 【BZOJ1449&&2895】球队预算 [费用流]

    球队预算 Time Limit: 10 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 在一个篮球联赛里,有n支球队, 球 ...

  4. 「JSOI2009」球队收益 / 球队预算

    题目链接 戳我 \(Solution\) 我们发现这道题目并不好做,因为要考虑两个因素对答案的影响.于是我们假设接下来的\(m\)场比赛双方都输了.这要我们就只要考虑赢一场对答案的影响了,那每赢一场输 ...

  5. bozj 1449/2895: 球队预算 -- 费用流

    2895: 球队预算 Time Limit: 10 Sec  Memory Limit: 256 MB Description 在一个篮球联赛里,有n支球队,球队的支出是和他们的胜负场次有关系的,具体 ...

  6. 洛谷 P4307 [JSOI2009]球队收益 / 球队预算(最小费用最大流)

    题面 luogu 题解 最小费用最大流 先假设剩下\(m\)场比赛,双方全输. 考虑\(i\)赢一局的贡献 \(C_i*(a_i+1)^2+D_i*(b_i-1)^2-C_i*a_i^2-D_i*b_ ...

  7. 【题解】JSOI2009球队收益 / 球队预算

    为什么大家都不写把输的场次增加的呢?我一定要让大家知道,这并没有什么关系~所以 \(C[i] <= D[i]\) 的条件就是来卖萌哒?? #include <bits/stdc++.h&g ...

  8. BZOJ 1449 球队收益(最小费用最大流)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1449 题意: 思路:首先,我们假设后面的M场比赛两方都是输的,即初始时的lose[i]再 ...

  9. BZOJ1449[JSOI2009]球队收益&BZOJ2895球队预算——最小费用最大流

    题目描述 输入 输出 一个整数表示联盟里所有球队收益之和的最小值. 样例输入 3 3 1 0 2 1 1 1 10 1 0 1 3 3 1 2 2 3 3 1 样例输出 43 提示   要求总费用最低 ...

随机推荐

  1. Android(java)学习笔记121:BroadcastReceiver之 自定义广播

    广播使用:               电台:对外发送信号.---------电台发送广播(可以自定义)               收音机:接收电台的信号.-----广播接收者 这里,我们就说明自定 ...

  2. anaconda 安装各种库

    在anaconda prompt 添加清华源 https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/ conda config --add channe ...

  3. (原)IPhone开发时把ToolBar中的元素居中的技巧

    在IPhone应用开发时,经常用到ToolBar,其中的控件通常都是居左,想让它居中就有点困难. 这里介绍一种方法: 将Flexible Space Bar Button Item从库中拖到位于控件左 ...

  4. 2019.05.26 周日--《阿里巴巴 Java 开发手册》精华摘要

    一.写在开头 Java作为一个编程界最流行的语言之一,有着很强的生命力.代码的编写规范也是不容忽视的,今天,我就把自己阅读的国内的互联网巨头阿里巴巴的<阿里巴巴 Java 开发手册>一些精 ...

  5. Nginx正向代理代理http和https服务

    Nginx正向代理代理http和https服务 1. 背景需求 通过Nginx正向代理,去访问外网.可实现局域网不能访问外网的能力,以及防止在上网行为上,留下访问痕迹. 2. 安装配置 2.1安装 w ...

  6. 测试 code style

    c++ #include <iostream> int main(int argc, char *argv[]) { /* An annoying "Hello World&qu ...

  7. Linux - 后台运行 ctrl + z , jobs , bg , fg

    一.& 最经常被用到 这个用在一个命令的最后,可以把这个命令放到后台执行 二.ctrl + z 可以将一个正在前台执行的命令放到后台,并且暂停三.jobs查看当前有多少在后台运行的命令四.fg ...

  8. python--字符编码理解

    一.字符编码简史: 美国:1963年 ASCII (包含127个字符  占1个字节) 中国:1980年 GB2312 (收录7445个汉字,包括6763个汉字和682个其它符号) 1993年 GB13 ...

  9. Eclipse将java项目导出可执行的jar文件

    1.在java项目上右键,点击“Export”,会弹出一个选择导出的文件类型 版权声明:本文为博主原创文章,未经博主允许不得转载. 原文地址:https://www.cnblogs.com/poter ...

  10. 第7课 Thinkphp 5 模板输出变量使用函数 Thinkphp5商城第四季

    目录 1. 手册地址: 2. 如果前面输出的变量在后面定义的函数的第一个参数,则可以直接使用 3. 还可以支持多个函数过滤,多个函数之间用"|"分割即可,例如: 4. 变量输出使用 ...