题目链接

  这个……学了一条定理

  最小路径覆盖=原图总点数-对应二分图最大匹配数

  这个对应二分图……是什么呢?

  就是这样

  

  这是原图

  

  这是拆点之后对应的二分图。

  

  然后咱们的目标就是从这张图上跑出个最大流来,然后用原图的总点数减去就是答案。

  至于记录路径……我发现有一个规律是可以在Dinic跑DFS的时候记。

  别的我不知道了。因为我只会Dinic。

  代码如下。

  

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#include<queue>
#include<cstdlib>
#define maxn 3000
#define maxm 60000
using namespace std;
inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} inline int count(int i){ return i&?i+:i-; } struct Edge{
int next,to,val;
}edge[maxm*];
int head[maxn*],num;
inline void addedge(int from,int to,int val){
edge[++num]=(Edge){head[from],to,val};
head[from]=num;
}
inline void add(int from,int to,int val){
addedge(from,to,val);
addedge(to,from,);
} bool vis[maxn];
int dfn[maxn];
int list[maxn*];
int Start,End;
int road[maxn*];
int n,m;
bool flag; bool bfs(){
memset(vis,,sizeof(vis));
queue<int> q; dfn[Start]=; vis[Start]=; q.push(Start);
while(!q.empty()){
int from=q.front(); q.pop();
for(int i=head[from];i;i=edge[i].next){
int to=edge[i].to;
if(vis[to]||edge[i].val<=) continue;
vis[to]=;
dfn[to]=dfn[from]+;
q.push(to);
}
}
return vis[End];
} int dfs(int x,int val){
//printf("%d %d\n",x,val);
if(val==||x==End) return val;
vis[x]=; int flow=;
for(int &i=list[x];i;i=edge[i].next){
int to=edge[i].to;
if(vis[to]||dfn[to]!=dfn[x]+||edge[i].val<=) continue;
int now=dfs(to,min(val,edge[i].val));
val-=now; edge[i].val-=now; flow+=now; edge[count(i)].val+=now;
if(val<=){
road[x]=to;
break;
}
}
if(flow!=val) dfn[x]=-;
return flow;
} int maxflow(){
int ans=;
while(bfs()){
memset(vis,,sizeof(vis));
for(int i=Start;i<=End;++i) list[i]=head[i];
int now=dfs(Start,0x7fffffff);
if(!now) break;
ans+=now;
}
return ans;
} int main(){
n=read(),m=read();End=n*+;
for(int i=;i<=n;++i){
add(Start,i,);
add(i+n,End,);
}
for(int i=;i<=m;++i){
int from=read(),to=read();
add(from,to+n,);
}
int ans=maxflow();
memset(vis,,sizeof(vis));
for(int i=;i<=n;++i){
if(road[i]==) continue;
int now=i;
while(now!=End&&now){
printf("%d ",now>n?now-=n:now);
int x=road[now]; road[now]=;
now=x;
}
printf("\n");
}
printf("%d",n-ans);
return ;
}

【Luogu】P2764最小路径覆盖(拆点求最大匹配)的更多相关文章

  1. Luogu P2764 最小路径覆盖问题(二分图匹配)

    P2764 最小路径覆盖问题 题面 题目描述 «问题描述: 给定有向图 \(G=(V,E)\) .设 \(P\) 是 \(G\) 的一个简单路(顶点不相交)的集合.如果 \(V\) 中每个顶点恰好在 ...

  2. luogu P2764 最小路径覆盖问题

    题目描述 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开始,长度也是任 ...

  3. LUOGU P2764 最小路径覆盖问题 (最小路径点覆盖)

    解题思路 有向图最小路径点覆盖问题,有这样的结论就是有向图最小路径点覆盖等于n-拆点二分图中最大匹配.具体怎么证明不太知道..输出方案时找到所有左部未匹配的点一直走$match​$就行了. #incl ...

  4. 【luogu P2764 最小路径覆盖问题】 模板

    题目链接:https://www.luogu.org/problemnew/show/P2764 把每个点在左边建一遍右边建一遍,再加上源点汇点,跑最大流,n-最大流就是答案. #include &l ...

  5. 洛谷 P2764 最小路径覆盖问题 解题报告

    P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...

  6. Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流)

    Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流) Description 给定有向图G=(V,E).设P是G的一个简单路(顶点不相 ...

  7. P2764 最小路径覆盖问题 网络流重温

    P2764 最小路径覆盖问题 这个题目之前第一次做的时候感觉很难,现在好多了,主要是二分图定理不太记得了,二分图定理 知道这个之后就很好写了,首先我们对每一个点进行拆点,拆完点之后就是跑最大流,求出最 ...

  8. 洛谷 P2764 最小路径覆盖问题【最大流+拆点+路径输出】

    题目链接:https://www.luogu.org/problemnew/show/P2764 题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V ...

  9. 网络流二十四题之P2764 最小路径覆盖问题

    题目描述 给定有向图 G=(V,E)G=(V,E) .设 PP 是 GG 的一个简单路(顶点不相交)的集合.如果 VV 中每个定点恰好在PP的一条路上,则称 PP 是 GG 的一个路径覆盖.PP中路径 ...

随机推荐

  1. 让您的Eclipse具有千变万化的外观

    大家每天用Eclipse做Java开发,是否厌倦了Eclipse千篇一律的白色背景呢? 看看Jerry这几种不同风格的Eclipse外观,是不是有耳目一新的感觉?如何做到的? 需要给Eclipse安装 ...

  2. typescript设置全屏

    fullScreen() { document.getElementById("fullScreen").style.display = "none"; doc ...

  3. Java中的集合Collection接口

    /* 集合:集合是存储对象数据的集合容器.集合比数组的优势: 1. 集合可以存储任意类型的对象数据,数组只能存储同一种数据类型 的数据. 2. 集合的长度是会发生变化的,数组的长度是固定的.----- ...

  4. PAT (Basic Level) Practise (中文)- 1009. 说反话 (20)

    http://www.patest.cn/contests/pat-b-practise/1009 给定一句英语,要求你编写程序,将句中所有单词的顺序颠倒输出. 输入格式:测试输入包含一个测试用例,在 ...

  5. Service Unavailable HTTP Error 503. The service is unavailable.

    原因: public void SetCurrentType(string[] projTypes) { _ProjTypes = _ProjTypes; } 确保没有无限递归或无限循环

  6. iOS小技巧–用runtime 解决UIButton 重复点击问题

    什么是这个问题 我们的按钮是点击一次响应一次, 即使频繁的点击也不会出问题, 可是某些场景下还偏偏就是会出问题. 通常是如何解决 我们通常会在按钮点击的时候设置这个按钮不可点击. 等待0.xS的延时后 ...

  7. javascript设计模式(张容铭)学习笔记 - 外观模式绑定事件

    有一个需求要为document对象绑定click事件来是想隐藏提示框的交互功能,于是小白写了如下代码: document.onclick = function(e) { e.preventDefaul ...

  8. NOIP2018 - 暑期博客整理

    暑假写的一些博客复习一遍.顺便再写一遍或者以现在的角度补充一点东西. 盛暑七月 初涉基环外向树dp&&bzoj1040: [ZJOI2008]骑士 比较经典的基环外向树dp.可以借鉴的 ...

  9. matlplotlib根据函数画出图形

    根据函数画出函数的轨迹 import matht = np.linspace(0, math.pi, 1000)x = np.sin(t)y = np.cos(t) + np.power(x, 2.0 ...

  10. C语言中的32个关键字

    C语言中的32个关键字 数据类型关键字(12个) (1)     char:声明字符型变量或函数 (2)     double:声明双精度变量或函数 (3)     enum:声明美剧类型 (4)   ...