题目描述

求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数。

输入

只有一个正整数n,n<=2000 000 000

输出

整点个数

样例输入

4

样例输出

4


题解

数论

#include <cmath>
#include <cstdio>
typedef long long ll;
ll judge(ll k)
{
ll t = (ll)sqrt(k);
return t * t == k ? t : 0;
}
ll gcd(ll a , ll b)
{
return b ? gcd(b , a % b) : a;
}
ll calc(ll k)
{
ll i , t , ans = 0;
for(i = 1 ; i * i <= k / 2 ; i ++ )
{
t = judge(k - i * i);
if(t && gcd(i , t) == 1) ans ++ ;
}
return ans;
}
int main()
{
ll n , i , ans = 0;
scanf("%lld" , &n);
for(i = 1 ; i * i <= 2 * n ; i ++ )
{
if(2 * n % i == 0)
{
ans += calc(i);
if(i * i != 2 * n) ans += calc(2 * n / i);
}
}
printf("%lld\n" , ans * 4);
return 0;
}

【bzoj1041】[HAOI2008]圆上的整点 数论的更多相关文章

  1. BZOJ1041:[HAOI2008]圆上的整点(数论)

    Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...

  2. bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点

    http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 ...

  3. BZOJ1041 [HAOI2008]圆上的整点 【数学】

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 4631  Solved: 2087 [Submit][S ...

  4. BZOJ1041 HAOI2008圆上的整点(数论)

    求x2+y2=r2的整数解个数,显然要化化式子.考虑求正整数解. y2=r2-x2→y2=(r-x)(r+x)→(r-x)(r+x)为完全平方数→(r-x)(r+x)/d2为完全平方数,d=gcd(r ...

  5. [BZOJ1041] [HAOI2008] 圆上的整点 (数学)

    Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...

  6. [bzoj1041][HAOI2008]圆上的整点

    我能想得出怎么做才奇怪好吗 题解:http://blog.csdn.net/csyzcyj/article/details/10044629 #include<iostream> #inc ...

  7. 【BZOJ1041】[HAOI2008]圆上的整点

    [BZOJ1041][HAOI2008]圆上的整点 题面 bzoj 洛谷 题解 不妨设\(x>0,y>0\) \[ x^2+y^2=r^2\\ y^2=(x+r)(x-r) \] 设\(r ...

  8. 【BZOJ1041】圆上的整点(数论)

    [BZOJ1041]圆上的整点(数论) 题面 BZOJ 洛谷 题解 好神仙的题目啊. 安利一个视频,大概是第\(7\)到\(19\)分钟的样子 因为要质因数分解,所以复习了一下\(Pollard\_r ...

  9. 2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ π )

    2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ \(\pi\) ) https://www.luogu.com.cn/problem/P2508 题意: 求一个给定的圆 \( ...

随机推荐

  1. 【洛谷4657】[CEOI2017] Chase(一个玄学的树形DP)

    点此看题面 大致题意: 有一棵树,树上编号为\(i\)的节点上有\(F_i\)个铁球,逃亡者有\(V\)个磁铁,当他在某个节点放下磁铁时,与这个节点相邻的所有节点上的铁球都会被吸引到这个节点.然后一个 ...

  2. matlplotlib 为折线图填充渐变颜色

    概要   本篇记录绘图时填充颜色时的一些常用设置,主要用到了 imshow,fill 函数.   填充图实例   填充的效果图如下: 图 1:渐变色效果图 可根据下方给出的代码进行自定义. #!/us ...

  3. ambari过程中要求各个节点时间同步

    设置时间同步 控制节点机器 cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime #设置时区为北京时间,这里为上海,因为centos里面只有上海... ...

  4. 模板引擎原理及underscore.js使用

    为什么要使用模板引擎 DOM结构简单,完全可以使用DOM方法创建DOM树.$("<td></td").appendTo(); 当页面比较复杂的时候,下面的程序中红 ...

  5. 1074: [SCOI2007]折纸origami

    Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 372  Solved: 229[Submit][Status][Discuss] Descriptio ...

  6. sql 参数化查询

      在初次接触sql时,笔者使用的是通过字符串拼接的方法来进行sql查询,但这种方法有很多弊端 其中最为明显的便是导致了sql注入. 通过特殊字符的书写,可以使得原本正常的语句在sql数据库里可编译, ...

  7. mysql面试题:字段中@之前字符相同且大于等于2条的所有记录

    公司发了一张面试题给我,题目如下: 在test数据库中有个flow_user表,找出email字段中@之前字符相同且大于等于2条的所有记录 答案: select substring_index(`em ...

  8. LigerUI 快速开发UI框架 链接

    LigerUI 快速开发UI框架 http://www.ligerui.com/ jQuery ligerUI 中文官方网站 http://www.ligerui.com/demo.html

  9. (转)iOS 对矢量图片的支持如何?

    简单说,iOS 支持矢量图片,不过支持的一般.在系统层面上,iOS 对矢量绘图支持得很好.iOS 的 Core Graphics 框架带有很多矢量绘图命令,简单一些的直线.矩形.椭圆,复杂一些的贝赛尔 ...

  10. Django2.2使用mysql数据库pymysql版本不匹配问题的解决过程与总结

    前置条件 django版本:2.2.1 python版本:3.6.6 mysql版本:mysql-community8.0.15 问题 在搭建django项目,配置mysql数据库时遇到无法迁移数据库 ...