UOJ_14_【UER #1】DZY Loves Graph_并查集

题面:http://uoj.ac/problem/14


考虑只有前两个操作怎么做。

每次删除一定是从后往前删,并且被删的边如果不是树边则没有影响,如果是树边也不存在边能替代。

直接删除这条边就可以。

于是用一个栈来保存现场,然后按秩合并的并查集维护就OK了。

现在有撤回操作,但根据上面对删边分析出的性质。

可以这样:

如果是插入一条边,然后撤回,相当于删边。

如果删边然后撤回,相当于什么也不做。

代码还是很好理解的。

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <cmath>
using namespace std;
typedef long long ll;
#define N 500050
inline char nc() {
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
int rd() {
int x=0; char s=nc();
while(s<'0'||s>'9') s=nc();
while(s>='0'&&s<='9') x=(x<<3)+(x<<1)+s-'0',s=nc();
return x;
}
char rc() {
char s=nc();
while(s!='A'&&s!='D'&&s!='R'&&s!=EOF) s=nc();
return s;
}
int fa[N],S[N],top,ec[N],n,m,siz[N];
ll ev[N];
int find(int x) {return fa[x]==x?x:find(fa[x]);}
inline void output(int x) {printf("%lld\n",ec[x]==n-1?ev[x]:0ll);}
void add(int x,int y,int z) {
int dx=find(x),dy=find(y);
top++; ec[top]=ec[top-1]; ev[top]=ev[top-1];
if(dx==dy) S[top]=0;
else {
if(siz[dx]>siz[dy]) swap(dx,dy);
S[top]=dx; fa[dx]=dy; siz[dy]+=siz[dx]; ec[top]++; ev[top]+=z;
}
}
void del(int K) {
while(K--) {
int t=S[top--]; siz[fa[t]]-=siz[t]; fa[t]=t;
}
}
int main() {
n=rd(); m=rd();
int i,x,y;
for(i=1;i<=n;i++) fa[i]=i,siz[i]=1;
char s=rc();
for(i=1;i<=m;i++) {
if(s=='A') {
x=rd(); y=rd(); add(x,y,i);
output(top);
s=rc();
if(s=='R') del(1);
}else if(s=='D') {
x=rd();
output(top-x);
s=rc();
if(s!='R') del(x);
}else {
output(top); s=rc();
}
}
}

UOJ_14_【UER #1】DZY Loves Graph_并查集的更多相关文章

  1. UOJ14 DZY Loves Graph 并查集

    传送门 题意:给出一张$N$个点,最开始没有边的图,$M$次操作,操作为加入边(边权为当前的操作编号).删除前$K$大边.撤销前一次操作,每一次操作后询问最小生成树边权和.$N \leq 3 \tim ...

  2. cf444E. DZY Loves Planting(并查集)

    题意 题目链接 Sol 神仙题啊Orzzzzzz 考场上的时候直接把树扔了对着式子想,想1h都没得到啥有用的结论. 然后cf正解居然是网络流??出给NOIP模拟赛T1???¥%--&((--% ...

  3. UOJ14 UER #1 DZY Loves Graph(最小生成树+并查集)

    显然可以用可持久化并查集实现.考虑更简单的做法.如果没有撤销操作,用带撤销并查集暴力模拟即可,复杂度显然可以均摊.加上撤销操作,删除操作的复杂度不再能均摊,但注意到我们在删除时就可以知道他会不会被撤销 ...

  4. [UER #1] DZY Loves Graph

    题目描述 开始有 \(n\) 个点,现在对这 \(n\) 个点进行了 \(m\) 次操作,对于第 \(i\) 个操作(从 \(1\) 开始编号)有可能的三种情况: \(Add\) a b: 表示在 \ ...

  5. 2019.01.22 uoj#14. 【UER #1】DZY Loves Graph(并查集)

    传送门 题意简述: 要求支持以下操作: 在a与b之间连一条长度为i的边(i是操作编号):删除当前图中边权最大的k条边:表示撤销第 i−1次操作,保证第1次,第i−1 次不是撤回操作. 要求在每次操作后 ...

  6. 【UER #1】[UOJ#12]猜数 [UOJ#13]跳蚤OS [UOJ#14]DZY Loves Graph

    [UOJ#12][UER #1]猜数 试题描述 这一天,小Y.小D.小C正在愉快地玩耍. 小Y是个数学家,他一拍脑袋冒出了一个神奇的完全平方数 n. 小D是个机灵鬼,很快从小Y嘴里套出了 n的值.然后 ...

  7. CF 445B DZY Loves Chemistry(并查集)

    题目链接: 传送门 DZY Loves Chemistry time limit per test:1 second     memory limit per test:256 megabytes D ...

  8. CodeForces 445B. DZY Loves Chemistry(并查集)

    转载请注明出处:http://blog.csdn.net/u012860063?viewmode=contents 题目链接:http://codeforces.com/problemset/prob ...

  9. 【UER #1】DZY Loves Graph

    UOJ小清新题表 题目内容 UOJ链接 DZY开始有\(n\)个点,现在他对这\(n\)个点进行了\(m\)次操作,对于第\(i\)个操作(从\(1\)开始编号)有可能的三种情况: Add a b: ...

随机推荐

  1. iphone、ipod Touch、ipad触屏时的js事件

    1.Touch事件简介 pc上的web页面鼠 标会产生onmousedown.onmouseup.onmouseout.onmouseover.onmousemove的事件,但是在移动终端如 ipho ...

  2. spring-web中的StringHttpMessageConverter简介

    spring的http请求内容转换,类似netty的handler转换.本文旨在通过分析StringHttpMessageConverter 来初步认识消息转换器HttpMessageConverte ...

  3. 重新编译Nginx指导手册【修复静态编译Openssl的Nginx漏洞 】(转)

    1. 概述    当前爆出了Openssl漏洞,会泄露隐私信息,涉及的机器较多,环境迥异,导致修复方案都有所不同.不少服务器使用的Nginx,是静态编译opensssl,直接将openssl编译到ng ...

  4. Android开发:LocationManager获取经纬度及定位过程(附demo)

    在Android开发其中.常常须要用到定位功能,尤其是依赖于地理位置功能的应用.非常多人喜欢使用百度地图,高德地图提供的sdk.开放API,可是在只须要经纬度,或者城市,街道地址等信息.并不须要提供预 ...

  5. 【BZOJ4237】稻草人 cdq分治+单调栈+二分

    [BZOJ4237]稻草人 Description JOI村有一片荒地,上面竖着N个稻草人,村民们每年多次在稻草人们的周围举行祭典. 有一次,JOI村的村长听到了稻草人们的启示,计划在荒地中开垦一片田 ...

  6. Netty聊天室-源码

    目录 Netty聊天室 源码工程 写在前面 [百万级流量 聊天室实战]: [分布式 聊天室] [Spring +Netty]: [Netty 原理] 死磕 系列 [提升篇]: [内力大增篇]: 疯狂创 ...

  7. Django创建模型_模型层

    1.在项目Mysite下创建应用bms 2.在bms下的models.py文件中创建模型 from django.db import models # Create your models here. ...

  8. When Programmers and Testers Collaborate

    When Programmers and Testers Collaborate Janet Gregory SOMETHING MAGICAL HAPPENS when testers and pr ...

  9. 《ASP.NET4从入门到精通》学习笔记2

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/dongdongdongJL/article/details/37610807   <ASP.N ...

  10. Spring IOC 容器源码分析(转)

    原文地址 Spring 最重要的概念是 IOC 和 AOP,本篇文章其实就是要带领大家来分析下 Spring 的 IOC 容器.既然大家平时都要用到 Spring,怎么可以不好好了解 Spring 呢 ...