luogu翻译

一些山距离起点有距离且不同,m只猫要到不同的山上去玩ti时间,有p个铲屎官人要去把所有猫接走,步行速度为1单位每秒,从1走到N座山不停下,必须在猫玩完后才可以把他带走。可以提前出发。问所有猫最少等待时间之和。


这题一开始有个模糊想法就是$f[i][j]$表示前i个人接j只猫,但是猫是乱序的,必须找一种方法顺序的dp。想到排序。但是排时间抑或是距离都不对,要考虑优先接哪个。然后瞎想到每只猫可以让人在$T_i-dis_i$时刻从起点出发正好接到不用等,那接一堆猫等待时间取决于要求出发最迟的那只猫。把每只猫正好接到要求的出发时间做一下从小到大排个序,一个人接某批猫,每只猫的等待时间就是最大出发时间减去接这只猫的出发时间。然后考虑在这上面dp。然而选的猫不一定连续。可以证明(怎么证?我也不会),只有每个人接这里面连续的一批猫才有可能产生最优解。可以意会一下,我原来连续的一段,中间有一个给下一个人带走,等待时间更长,给上一个人带走,差不多、大概、应当也不优。实在不行可以打表看一下,比较其他划分有没有比连续划分优的。反正我是根据类似经历感觉出来的。

然后方程很好写,区间划分。sum是等待时间前缀和,方便转移。a是等待时间,注意在排完序后就单调了。

$f[i][j]=min\{f[i-1][k]+(j-k)*a[j]-(sum[j]-sum[k])\} $       $   i<=j<=n $     $ i-1<=k<j$

然后拆开写斜截式,搞搞就斜率优化维护下凸壳,又斜率单调增,所以上述$O(pm^2)$化为$O(pm)$

$f[i-1][k]+sum[k]=a[j]*k+j*a[j]+f[i][j]+sum[j]$


记下错误:

初始化又错!初始化又错!初始化又错!LINE23.真的不能再犯了。。。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
template<typename T>inline char MIN(T&A,T B){return A>B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A<B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+c-'',c=getchar();return f?x=-x:x;
}
const int N=+;
ll f[][N],d[N],a[N],sum[N],hi,ti;
int q[N];
int n,m,p,l,r;
inline ll y(int k,int i){return f[i-][k]+sum[k];} int main(){//freopen("test.in","r",stdin);//freopen("tmp.out","w",stdout);
read(n),read(m),read(p);if(p>=m)return printf("0\n"),;
for(register int i=;i<=n;++i)d[i]=read(d[i])+d[i-];
for(register int i=;i<=m;++i)read(hi),read(ti),a[i]=ti-d[hi];
sort(a+,a+m+);
for(register int i=;i<=m;++i)sum[i]=a[i]+sum[i-],f[][i]=i*1ll*a[i]-sum[i];//MISTAKES!
for(register int i=;i<=p;++i){
q[l=r=]=i-;
for(register int j=i;j<=m;++j){
while(l<r&&y(q[l+],i)-y(q[l],i)<=(q[l+]-q[l])*1ll*a[j])++l;
f[i][j]=f[i-][q[l]]+(j-q[l])*1ll*a[j]-sum[j]+sum[q[l]];
while(l<r&&(y(q[r],i)-y(q[r-],i))*(j-q[r])>=(y(j,i)-y(q[r],i))*(q[r]-q[r-]))--r;
q[++r]=j;
}
}
printf("%I64d\n",f[p][m]);
return ;
}

CF331B Cats Transport[斜率优化dp+贪心]的更多相关文章

  1. CodeForces 311 B Cats Transport 斜率优化DP

    题目传送门 题意:现在有n座山峰,现在 i-1 与 i 座山峰有 di长的路,现在有m个宠物, 分别在hi座山峰,第ti秒之后可以被带走,现在有p个人,每个人会从1号山峰走到n号山峰,速度1m/s.现 ...

  2. Codeforces 311B Cats Transport 斜率优化dp

    Cats Transport 出发时间居然能是负的,我服了... 卡了我十几次, 我一直以为斜率优化写搓了. 我们能得出dp方程式 dp[ i ][ j ] = min(dp[ k ][ j - 1 ...

  3. CF311B Cats Transport 斜率优化DP

    题面:CF311B Cats Transport 题解: 首先我们观察到山与距离其实是没有什么用的,因为对于任意一只猫,我们都可以直接算出如果有一个人要恰好接走它,需要在哪一时刻出发,我们设第i只猫对 ...

  4. 【题解】Cats Transport (斜率优化+单调队列)

    [题解]Cats Transport (斜率优化+单调队列) # When Who Problem Lang Verdict Time Memory 55331572 Jun/09/2019 19:1 ...

  5. luogu P1721 [NOI2016]国王饮水记 斜率优化dp 贪心 决策单调性

    LINK:国王饮水记 看起来很不可做的样子. 但实际上还是需要先考虑贪心. 当k==1的时候 只有一次操作机会.显然可以把那些比第一个位置小的都给扔掉. 然后可以得知剩下序列中的最大值一定会被选择. ...

  6. $CF311B\ Cats\ Transport$ 斜率优化

    AcWing Description Sol 设f[i][j]表示前i个饲养员接走前j只猫咪的最小等待时间. 要接到j猫咪,饲养员的最早出发时间是可求的,设为d: $ d[j]=Tj-\sum_{k= ...

  7. CF-311B Cats Transport(斜率优化DP)

    题目链接 题目描述 小S是农场主,他养了 \(M\)只猫,雇了 \(P\) 位饲养员. 农场中有一条笔直的路,路边有 \(N\) 座山,从 \(1\) 到 \(N\)编号. 第 \(i\) 座山与第 ...

  8. 2018.09.07 codeforces311B. Cats Transport(斜率优化dp)

    传送门 斜率优化dp好题. 对于第i只猫,显然如果管理员想从出发开始刚好接到它,需要在t[i]=h[i]−dist(1,i)" role="presentation" s ...

  9. 斜率优化dp 的简单入门

    不想写什么详细的讲解了...而且也觉得自己很难写过某大佬(大米饼),于是建议把他的 blog 先看一遍,然后自己加了几道题目以及解析...顺便建议看看算法竞赛(蓝皮书)的 0x5A 斜率优化(P294 ...

随机推荐

  1. vim 穿越时空

    1. 回到以前的文件状态 :earlier 3m   回到文件3分钟之前的状态 2. 回到以后的文件状态 :later 3m      回到文件3分钟之后的状态 3. 时间单位 s 秒 m 分钟 d ...

  2. python 使用微信远程控制电脑

    今天来分享一个"高大上"的技术--使用python编写一个能够用微信远程控制电脑的程序! 先来分析一下控制的详细流程: 我们使用微信给特定的邮箱发送一封邮件,当中包括了我们想要电脑 ...

  3. 集群通信组件Tribes之怎样维护集群成员信息

    一个集群包括若干成员,要对这些成员进行管理就必需要有一张包括全部成员的列表.当要对某个节点做操作时通过这个列表能够准确找到该节点的地址进而对该节点发送操作消息.怎样维护这张包括全部成员的列表是本节要讨 ...

  4. 开发ActiveX控件调用另一个ActiveX系列0——身份证识别仪驱动的问题

    程序员要从0下表开始,这篇是介绍这个系列的背景的,没有兴趣的人可以直接跳过. 为什么要开发ActiveX控件 由于工作需要,我们开发了一个网站,使用了一款身份证识别仪的网页ActiveX(OCX)插件 ...

  5. OpenStack安装CentOS镜像:Device eth0 does not seem to be present, delaying initialization

    解决办法:删除 /etc/udev/rules.d/70-persistent-net.rules 后重启机器.70-persistent-net.rules这个文件确定了网卡与MAC地址的绑定,cl ...

  6. Svn服务器备份迁移小结

    注:svn备份千万不要采用打包压缩,然后解压文件的方式. 备份和还原之前先要关掉svn服务器. svn备份一般采用三种方式: 1)svnadmin dump 2)svnadmin hotcopy 3) ...

  7. POJ2407_Relatives【欧拉phi函数】【基本】

    Relatives Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11422 Accepted: 5571 Descriptio ...

  8. Jquery获取iframe中的元素

    iframe与父页面之间相互获取元素的方法: 1.从父页面中获取iframe页面中的元素: 用法: $(window.frames["iframe_include_adverse" ...

  9. Android_YouthArea之ApeendTextView

    这次给我自己的项目打个广告:http://sj.qq.com/myapp/detail.htm?apkName=com.youthcommunity 这款APP 不同于SoHOT是积极的,是年轻人的信 ...

  10. Python中属性

    属性定义的两种方式: 1.num1=property(GetNum,SetNum)   class Pro(): def __init__(self): self._num= def GetNum(s ...