传送门:http://acm.hdu.edu.cn/showproblem.php?pid=2767

Proving Equivalences

Time Limit: 4000/2000 MS (Java/Others)

Memory Limit: 32768/32768 K (Java/Others)

Problem Description

Consider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:

  1. A is invertible.
  2. Ax = b has exactly one solution for every n × 1 matrix b.
  3. Ax = b is consistent for every n × 1 matrix b.
  4. Ax = 0 has only the trivial solution x = 0.

The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?

Input

On the first line one positive number: the number of testcases, at most 100. After that per testcase:

  • One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
  • m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.

Output

Per testcase:

  • One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.

Sample Input

2

4 0

3 2

1 2

1 3

Sample Output

4

2


解题心得:

  1. 题目说了一大堆废话,其实就是给你一个有向图,问你最少还需要添加多少条有向边可以将整个图变成强联通图。
  2. 其实想想就知道,可以先使用tarjan缩点,缩点之后会形成一个新的图,然后看图中出度为0和入度为0的点,因为这些点必然需要添一条边到图中,所以直接去取出度为0点的数目和入读为0的点的数目的最大值。为啥是最大值?很简单啊,将一条边添在出度为0的点和入度为0的点之间不就解决了两个点了吗,但是最后肯定要添加数目多的度为0的点啊。
  3. 注意一个坑点,那就如果可以直接缩为一个点那是不用添边的。

#include<stdio.h>
#include<iostream>
#include<cstring>
#include<stack>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn = 2e4+100;
vector <int> ve[maxn],maps[maxn],shrink[maxn];
bool vis[maxn];
int tot,num,indu[maxn],outdu[maxn],n,m,dfn[maxn],low[maxn],pre[maxn];
stack <int> st; void init()//初始化很重要
{
while(!st.empty())
st.pop();
tot = num = 0;
memset(outdu,0,sizeof(outdu));
memset(indu,0,sizeof(indu));
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(vis,0,sizeof(vis));
memset(pre,0,sizeof(pre));
for(int i=0;i<maxn;i++)
{
ve[i].clear();
shrink[i].clear();
maps[i].clear();
}
for(int i=0;i<m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
ve[a].push_back(b);
}
} void tarjan(int x)
{
dfn[x] = low[x] = ++tot;
vis[x] = true;
st.push(x);
for(int i=0;i<ve[x].size();i++)
{
int v = ve[x][i];
if(!dfn[v])
{
tarjan(v);
low[x] = min(low[x],low[v]);
}
else if(vis[v])
low[x] = min(low[x],dfn[v]);
}
if(low[x] == dfn[x])
{
while(1)
{
int now = st.top();
st.pop();
vis[now] = false;
shrink[num].push_back(now);
pre[now] = num;
if(now == x)
break;
}
num++;
}
} void get_new_maps()
{
if(num == 1)
{
printf("0\n");
return;
}
for(int i=1;i<=n;i++)
{
for(int j=0;j<ve[i].size();j++)
{
int a = i;
int b = ve[i][j];
if(pre[a] != pre[b])
{
outdu[pre[a]]++;
indu[pre[b]]++;
}
}
}
int sum_indu,sum_outdu;
sum_indu = sum_outdu = 0;
for(int i=0;i<num;i++)
{
if(!indu[i])
sum_indu++;
if(!outdu[i])
sum_outdu++;
}
printf("%d\n",max(sum_indu,sum_outdu));
} int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
init();
for(int i=1;i<=n;i++)
{
if(!dfn[i])
tarjan(i);
}
get_new_maps();
}
return 0;
}

HDU:2767-Proving Equivalences(添边形成连通图)的更多相关文章

  1. HDU 2767 Proving Equivalences (强联通)

    pid=2767">http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 40 ...

  2. hdu 2767 Proving Equivalences

    Proving Equivalences 题意:输入一个有向图(强连通图就是定义在有向图上的),有n(1 ≤ n ≤ 20000)个节点和m(0 ≤ m ≤ 50000)条有向边:问添加几条边可使图变 ...

  3. HDU 2767 Proving Equivalences(至少增加多少条边使得有向图变成强连通图)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  4. HDU 2767 Proving Equivalences (Tarjan)

    Proving Equivalences Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other ...

  5. hdu 2767 Proving Equivalences(tarjan缩点)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2767 题意:问最少加多少边可以让所有点都相互连通. 题解:如果强连通分量就1个直接输出0,否者输出入度 ...

  6. HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)

    Consider the following exercise, found in a generic linear algebra textbook. Let A be an n × n matri ...

  7. hdu 2767 Proving Equivalences 强连通缩点

    给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进 ...

  8. HDU 2767:Proving Equivalences(强连通)

    题意: 一个有向图,问最少加几条边,能让它强连通 方法: 1:tarjan 缩点 2:采用如下构造法: 缩点后的图找到所有头结点和尾结点,那么,可以这么构造:把所有的尾结点连一条边到头结点,就必然可以 ...

  9. HDU 2767.Proving Equivalences-强连通图(有向图)+缩点

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  10. hdoj 2767 Proving Equivalences【求scc&&缩点】【求最少添加多少条边使这个图成为一个scc】

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

随机推荐

  1. javascript 关于hashtable

    javascript 实现HashTable(哈希表) 一.javascript哈希表简介 javascript里面是没有哈希表的,一直在java,C#中有时候用到了这一种数据结构,javascrip ...

  2. 如何优化Mysql执行查询数据的速度

    在项目中数据量小的情况下使用like查询速度还行,但是随着数据一天一天增加,再使用like进行模糊查询的时候速度上就会显得比较慢,现提供两套解决方案: 问题: 使用like查询效率很慢 select ...

  3. VS2012,更新补丁后的残忍--创建项目未找到与约束匹配的导出

    解决方法网址:http://blog.csdn.net/jly4758/article/details/18660945

  4. Kendo UI 单页面应用(二) Router 类

    Kendo UI 单页面应用(二) Router 类 Route 类负责跟踪应用的当前状态和支持在应用的不同状态之间切换.Route 通过 Url 的片段功能(#url)和流量器的浏览历史功能融合在一 ...

  5. ESP8266串口WiFi扩展板详解

    产品简介 ESP8266串口WiFi扩展板是深圳四博智联科技有限公司开发的一款基于乐鑫ESP8266的超低功耗的UART-WiFi模块,兼容Arduino UNO.Mega等标准主板,可以方便地进行二 ...

  6. Android 开发干货,键盘状态

    地址:http://www.imooc.com/article/4711 [A]stateUnspecified:软键盘的状态并没有指定,系统将选择一个合适的状态或依赖于主题的设置 [B]stateU ...

  7. 单链表常见面试题(C语言实现)

    总结常见的单链表操作函数,复习使用,仅供参考,代码调试通过. #include<stdio.h> typedef struct node{ int data; struct node *n ...

  8. Linux基础环境_安装配置教程(CentOS7.2 64、JDK1.8、Tomcat8)

    Linux基础环境_安装配置教程 (CentOS7.2 64.JDK1.8.Tomcat8) 安装包版本 1)     VMawre-workstation版本包 地址: https://my.vmw ...

  9. WinForm 窗体API移动 API阴影

    窗体移动 //窗体移动API [DllImport("user32.dll")] public static extern bool ReleaseCapture(); [DllI ...

  10. xampp默认配置拿shell

    xampp默认配置拿shell 首先我们先来科普一下xampp(Apache+MySQL+PHP+PERL)是一个功能强大的建 XAMPP 软件站集成软件包 是一个易于安装且包含 MySQL.PHP ...