[HNOI2017]抛硬币
Description
小A和小B是一对好朋友,他们经常一起愉快的玩耍。最近小B沉迷于××师手游,天天刷本,根本无心搞学习。但是已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生。勤勉的小A为了劝说小B早日脱坑,认真学习,决定以抛硬币的形式让小B明白他是一个彻彻底底的非洲人,从而对这个游戏绝望。两个人同时抛b次硬币,如果小A的正面朝上的次数大于小B正面朝上的次数,则小A获胜。但事实上,小A也曾经沉迷过拉拉游戏,而且他一次UR也没有抽到过,所以他对于自己的运气也没有太大把握。所以他决定在小B没注意的时候作弊,悄悄地多抛几次硬币,当然,为了不让小B怀疑,他不会抛太多次。现在小A想问你,在多少种可能的情况下,他能够胜过小B呢?由于答案可能太大,所以你只需要输出答案在十进制表示下的最后k位即可。
Input
有多组数据,对于每组数据输入三个数a,b,k,分别代表小A抛硬币的次数,小B抛硬币的次
数,以及最终答案保留多少位整数。
\(1\leqslant a,b\leqslant 10^{15},b\leqslant a\leqslant b+10^4,1\leqslant k\leqslant 9\),数据组数小于等于10。
Output
对于每组数据,输出一个数,表示最终答案的最后k位为多少,若不足k位以0补全。
Sample Input
2 1 9
Sample Output
000000004
6
3 2 1
题目要求
\]
暴力可以过30pts,后缀和优化一下,可以拿到70pts(考场上拿了70分就赶快想其他题去)
怎么拿到满分嘞?我们来推柿子
\]
我们令\(i+j=k\),那么后面那部分的式子变为
\]
\(\sum\limits_{i=0}^k\binom{b}{i}\binom{a}{k-i}\)相当于枚举\(k\)中的部分在\(a\)中或在\(b\)中,所以\(\sum\limits_{i=0}^k\binom{b}{i}\binom{a}{k-i}=\binom{a+b}{k}\)
所以原式可以变成
\]
然后就可以暴力枚举了……还是70pts啊喂,难道优化没啥用?
肯定有用的!我们考虑一下数据中还有一个条件没有用上:\(b-a\leqslant 10^4\)
我们将杨辉三角第\(a+b\)行的前\(b\)个元素标记一下,由于对称,所以我们把后\(b\)个元素也标记一下,可以发现,没有标记的元素至多只有\(2(a-b)\)个!
我们可以\(O(a-b)\)减去中间那部分,然后除2即可,所以答案为
\]
做完了吗?并没有,2在\(10^x\)下没有逆元……所以这个方法不可行
考虑一下\(\sum\limits_{i=b+1}^{a+1}\binom{a+b}{i}\)这部分也是有对称的!除了\(a+b\)为偶数时……会单出来一个\(\binom{a+b}{(a+b)/2}\)
但其实,\(\binom{a+b}{(a+b)/2)}=\binom{a+b-1}{(a+b)/2-1}+\binom{a+b-1}{(a+b)/2}\),我们可以发现,\(\binom{a+b-1}{(a+b)/2-1}=\binom{a+b-1}{(a+b)/2}\)
所以\(\dfrac{\binom{a+b}{(a+b)/2}}{2}=\binom{a+b-1}{(a+b)/2-1}=\binom{a+b-1}{(a+b)/2}\)
那么最终答案为
\]
/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define it iterator
#define vt value_type
#define inf 0x7f7f7f7f
typedef long long ll;
typedef long double ld;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
template<typename T>inline T frd(T x){
int f=1; char ch=gc();
for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
template<typename T>inline T read(T x){
int f=1;char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline void print(int x){
if (x<0) putchar('-'),x=-x;
if (x>9) print(x/10);
putchar(x%10+'0');
}
template<typename T>inline T min(T x,T y){return x<y?x:y;}
template<typename T>inline T max(T x,T y){return x>y?x:y;}
template<typename T>inline T swap(T &x,T &y){T t=x; x=y,y=t;}
const int N=2e6;
namespace Math{
int P[3],V[3],C[3],f[3][N+10],SP;
int mlt(int a,ll b,int p=inf){
int res=1;
for (;b;b>>=1,a=1ll*a*a%p) if (b&1) res=1ll*res*a%p;
return res;
}
void prepare(int p){
P[1]=2,V[1]=f[1][0]=1,C[1]=0;
while (p%2==0) V[1]<<=1,p>>=1,C[1]++;
for (int i=1;i<=V[1];i++) f[1][i]=1ll*f[1][i-1]*(i%2?i:1)%V[1];
P[2]=5,V[2]=f[2][0]=1,C[2]=0;
while (p%5==0) V[2]*=5,p/=5,C[2]++;
for (int i=1;i<=V[2];i++) f[2][i]=1ll*f[2][i-1]*(i%5?i:1)%V[2];
SP=V[1]*V[2];
}
int gcd(int a,int b){return !b?a:gcd(b,a%b);}
void exgcd(int a,int b,int &x,int &y){
if (!b){x=1,y=0;return;}
exgcd(b,a%b,x,y);
int t=x; x=y,y=t-a/b*y;
}
int Ex_GCD(int a,int b,int c){
int d=gcd(a,b),x,y;
if (c%d) return -1;
a/=d,b/=d,c/=d;
exgcd(a,b,x,y);
x=(1ll*x*c%b+b)%b;
return x;
}
int work(ll n,int i){
if (n<=1) return 1;
int res=1ll*mlt(f[i][V[i]],n/V[i],V[i])*f[i][n%V[i]]%V[i];
return 1ll*res*work(n/P[i],i)%V[i];
}
ll count(ll n,int i){return n<P[i]?0:count(n/P[i],i)+n/P[i];}
int calc(ll n,ll m,int i){
ll cnt=count(n,i)-count(m,i)-count(n-m,i);
if (C[i]<=cnt) return 0;
return 1ll*work(n,i)*Ex_GCD(work(m,i),V[i],1)%V[i]*Ex_GCD(work(n-m,i),V[i],1)%V[i]*mlt(P[i],cnt)%V[i];
}
int Ex_C(ll n,ll m){
if (n<m) return 0;
int Ans=0;
Ans=(Ans+1ll*Ex_GCD(SP/V[1],V[1],1)*(SP/V[1])%SP*calc(n,m,1)%SP)%SP;
Ans=(Ans+1ll*Ex_GCD(SP/V[2],V[2],1)*(SP/V[2])%SP*calc(n,m,2)%SP)%SP;
return Ans;
}
}
using namespace Math;
int main(){
ll a,b; int p,last=0;
while (~scanf("%lld%lld%d",&a,&b,&p)){
p=mlt(10,p); int Ans=0;
if (p!=last) prepare(last=p);
if (a==b){
Ans=mlt(2,a+b-1,p)-Ex_C(a+b-1,a-1);
Ans=(Ans%p+p)%p;
while (Ans<p/10) putchar('0'),p/=10;
printf("%d\n",Ans);
continue;
}
if ((a+b)%2==0) Ans=Ex_C(a+b-1,((a+b)>>1)-1);
for (ll i=b+1;i<(a+b+1)>>1;i++) Ans=(Ex_C(a+b,i)+Ans)%p;
Ans=mlt(2,a+b-1,p)+Ans;
Ans=(Ans%p+p)%p;
while (Ans<p/10) putchar('0'),p/=10;
printf("%d\n",Ans);
}
return 0;
}
[HNOI2017]抛硬币的更多相关文章
- bzoj 4830: [Hnoi2017]抛硬币 [范德蒙德卷积 扩展lucas]
4830: [Hnoi2017]抛硬币 题意:A投a次硬币,B投b次硬币,a比b正面朝上次数多的方案数,模\(10^k\). \(b \le a \le b+10000 \le 10^{15}, k ...
- 【BZOJ4830】[HNOI2017]抛硬币(组合计数,拓展卢卡斯定理)
[BZOJ4830][HNOI2017]抛硬币(组合计数,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 暴力是啥? 枚举\(A\)的次数和\(B\)的次数,然后直接组合数算就好了:\(\display ...
- bzoj 4830: [Hnoi2017]抛硬币
Description 小A和小B是一对好朋友,他们经常一起愉快的玩耍.最近小B沉迷于**师手游,天天刷本,根本无心搞学习.但是 已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生.勤勉的小A ...
- [AH/HNOI2017]抛硬币
题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到 SSR,让他非常怀疑人生.勤勉的小 A ...
- bzoj4830 hnoi2017 抛硬币
题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到 SSR,让他非常怀疑人生.勤勉的小 A ...
- luogu P3726 [AH2017/HNOI2017]抛硬币
传送门 我是真的弱,看题解都写了半天,,, 这题答案应该是\(\sum_{i=1}^{a}\binom{a}{i}\sum_{j=0}^{min(b,i-1)}\binom{b}{j}\) 上面那个式 ...
- 【刷题】BZOJ 4830 [Hnoi2017]抛硬币
Description 小A和小B是一对好朋友,他们经常一起愉快的玩耍.最近小B沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生.勤勉的小A为 ...
- [luogu3726 HNOI2017] 抛硬币 (拓展lucas)
传送门 数学真的太优秀了Orz 数据真的太优秀了Orz 题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月, ...
- [AH2017/HNOI2017]抛硬币(扩展lucas)
推式子+exlucas. 题意: 小 A 和小 B 是一对好朋友,两个人同时抛 b 次硬币,如果小 A 的正面朝上的次数大于小 B 正面朝上的次数,则小 A 获胜. 小 A 决定在小 B 没注意的时候 ...
随机推荐
- Ubuntu 17.4下如何安装VMwareTools
解压vmware-tools-distrib 运行vmware-install.pl安装过程中间出现错误,要求选择"ifconfig"工具.由于ifconfig工具过时逐渐被各大厂 ...
- elasticsearch ——id字段说明,内部是_uid
_id field Each document indexed is associated with a _type (see the section called “Mapping Typesedi ...
- Jmeter-JDBC Request
1. 新建一个测试计划 2. 新建一个线程组 3. 创建数据库连接 4.配置数据库连接 5.添加JDBC Request 6.添加监听器
- bzoj 4753 [Jsoi2016]最佳团体——0/1分数规划
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4753 0/1分数规划裸题. #include<iostream> #includ ...
- Python3解leetcode Maximum Subarray
问题描述: Given an integer array nums, find the contiguous subarray (containing at least one number) whi ...
- IoT:template
ylbtech-IoT: 1.返回顶部 2.返回顶部 3.返回顶部 4.返回顶部 5.返回顶部 6.返回顶部 作者:ylbtech出处:http://ylbtech.cnb ...
- 11 Vue学习 headtop
1: HeaderTop.vue : 面包屑:el-breadcrumb 定义面包屑, separator是分隔符. el-breadcrumb-item: 是面包屑中用 分隔符 分开的多 ...
- sum(sum(abs(y))) 中 sum(sum())什么意思?
>> y=[1 3;2 5] y = 1 3 2 5 >> sum(y) ans = 3 8 >> sum(s ...
- JS---设置简易红绿灯
<!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...
- 选择排序(java)
选择排序的思想是:内外两层循环,第一层循环从第一个数开始到倒数第一个数, 第二层循环从上一层的数开始, 与上一层循环的数比较,如果小于则交换位置. 代码如下: public class SelectS ...