[HNOI2017]抛硬币
Description
小A和小B是一对好朋友,他们经常一起愉快的玩耍。最近小B沉迷于××师手游,天天刷本,根本无心搞学习。但是已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生。勤勉的小A为了劝说小B早日脱坑,认真学习,决定以抛硬币的形式让小B明白他是一个彻彻底底的非洲人,从而对这个游戏绝望。两个人同时抛b次硬币,如果小A的正面朝上的次数大于小B正面朝上的次数,则小A获胜。但事实上,小A也曾经沉迷过拉拉游戏,而且他一次UR也没有抽到过,所以他对于自己的运气也没有太大把握。所以他决定在小B没注意的时候作弊,悄悄地多抛几次硬币,当然,为了不让小B怀疑,他不会抛太多次。现在小A想问你,在多少种可能的情况下,他能够胜过小B呢?由于答案可能太大,所以你只需要输出答案在十进制表示下的最后k位即可。
Input
有多组数据,对于每组数据输入三个数a,b,k,分别代表小A抛硬币的次数,小B抛硬币的次
数,以及最终答案保留多少位整数。
\(1\leqslant a,b\leqslant 10^{15},b\leqslant a\leqslant b+10^4,1\leqslant k\leqslant 9\),数据组数小于等于10。
Output
对于每组数据,输出一个数,表示最终答案的最后k位为多少,若不足k位以0补全。
Sample Input
2 1 9
Sample Output
000000004
6
3 2 1
题目要求
\]
暴力可以过30pts,后缀和优化一下,可以拿到70pts(考场上拿了70分就赶快想其他题去)
怎么拿到满分嘞?我们来推柿子
\]
我们令\(i+j=k\),那么后面那部分的式子变为
\]
\(\sum\limits_{i=0}^k\binom{b}{i}\binom{a}{k-i}\)相当于枚举\(k\)中的部分在\(a\)中或在\(b\)中,所以\(\sum\limits_{i=0}^k\binom{b}{i}\binom{a}{k-i}=\binom{a+b}{k}\)
所以原式可以变成
\]
然后就可以暴力枚举了……还是70pts啊喂,难道优化没啥用?
肯定有用的!我们考虑一下数据中还有一个条件没有用上:\(b-a\leqslant 10^4\)
我们将杨辉三角第\(a+b\)行的前\(b\)个元素标记一下,由于对称,所以我们把后\(b\)个元素也标记一下,可以发现,没有标记的元素至多只有\(2(a-b)\)个!
我们可以\(O(a-b)\)减去中间那部分,然后除2即可,所以答案为
\]
做完了吗?并没有,2在\(10^x\)下没有逆元……所以这个方法不可行
考虑一下\(\sum\limits_{i=b+1}^{a+1}\binom{a+b}{i}\)这部分也是有对称的!除了\(a+b\)为偶数时……会单出来一个\(\binom{a+b}{(a+b)/2}\)
但其实,\(\binom{a+b}{(a+b)/2)}=\binom{a+b-1}{(a+b)/2-1}+\binom{a+b-1}{(a+b)/2}\),我们可以发现,\(\binom{a+b-1}{(a+b)/2-1}=\binom{a+b-1}{(a+b)/2}\)
所以\(\dfrac{\binom{a+b}{(a+b)/2}}{2}=\binom{a+b-1}{(a+b)/2-1}=\binom{a+b-1}{(a+b)/2}\)
那么最终答案为
\]
/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define it iterator
#define vt value_type
#define inf 0x7f7f7f7f
typedef long long ll;
typedef long double ld;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
template<typename T>inline T frd(T x){
int f=1; char ch=gc();
for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
template<typename T>inline T read(T x){
int f=1;char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline void print(int x){
if (x<0) putchar('-'),x=-x;
if (x>9) print(x/10);
putchar(x%10+'0');
}
template<typename T>inline T min(T x,T y){return x<y?x:y;}
template<typename T>inline T max(T x,T y){return x>y?x:y;}
template<typename T>inline T swap(T &x,T &y){T t=x; x=y,y=t;}
const int N=2e6;
namespace Math{
int P[3],V[3],C[3],f[3][N+10],SP;
int mlt(int a,ll b,int p=inf){
int res=1;
for (;b;b>>=1,a=1ll*a*a%p) if (b&1) res=1ll*res*a%p;
return res;
}
void prepare(int p){
P[1]=2,V[1]=f[1][0]=1,C[1]=0;
while (p%2==0) V[1]<<=1,p>>=1,C[1]++;
for (int i=1;i<=V[1];i++) f[1][i]=1ll*f[1][i-1]*(i%2?i:1)%V[1];
P[2]=5,V[2]=f[2][0]=1,C[2]=0;
while (p%5==0) V[2]*=5,p/=5,C[2]++;
for (int i=1;i<=V[2];i++) f[2][i]=1ll*f[2][i-1]*(i%5?i:1)%V[2];
SP=V[1]*V[2];
}
int gcd(int a,int b){return !b?a:gcd(b,a%b);}
void exgcd(int a,int b,int &x,int &y){
if (!b){x=1,y=0;return;}
exgcd(b,a%b,x,y);
int t=x; x=y,y=t-a/b*y;
}
int Ex_GCD(int a,int b,int c){
int d=gcd(a,b),x,y;
if (c%d) return -1;
a/=d,b/=d,c/=d;
exgcd(a,b,x,y);
x=(1ll*x*c%b+b)%b;
return x;
}
int work(ll n,int i){
if (n<=1) return 1;
int res=1ll*mlt(f[i][V[i]],n/V[i],V[i])*f[i][n%V[i]]%V[i];
return 1ll*res*work(n/P[i],i)%V[i];
}
ll count(ll n,int i){return n<P[i]?0:count(n/P[i],i)+n/P[i];}
int calc(ll n,ll m,int i){
ll cnt=count(n,i)-count(m,i)-count(n-m,i);
if (C[i]<=cnt) return 0;
return 1ll*work(n,i)*Ex_GCD(work(m,i),V[i],1)%V[i]*Ex_GCD(work(n-m,i),V[i],1)%V[i]*mlt(P[i],cnt)%V[i];
}
int Ex_C(ll n,ll m){
if (n<m) return 0;
int Ans=0;
Ans=(Ans+1ll*Ex_GCD(SP/V[1],V[1],1)*(SP/V[1])%SP*calc(n,m,1)%SP)%SP;
Ans=(Ans+1ll*Ex_GCD(SP/V[2],V[2],1)*(SP/V[2])%SP*calc(n,m,2)%SP)%SP;
return Ans;
}
}
using namespace Math;
int main(){
ll a,b; int p,last=0;
while (~scanf("%lld%lld%d",&a,&b,&p)){
p=mlt(10,p); int Ans=0;
if (p!=last) prepare(last=p);
if (a==b){
Ans=mlt(2,a+b-1,p)-Ex_C(a+b-1,a-1);
Ans=(Ans%p+p)%p;
while (Ans<p/10) putchar('0'),p/=10;
printf("%d\n",Ans);
continue;
}
if ((a+b)%2==0) Ans=Ex_C(a+b-1,((a+b)>>1)-1);
for (ll i=b+1;i<(a+b+1)>>1;i++) Ans=(Ex_C(a+b,i)+Ans)%p;
Ans=mlt(2,a+b-1,p)+Ans;
Ans=(Ans%p+p)%p;
while (Ans<p/10) putchar('0'),p/=10;
printf("%d\n",Ans);
}
return 0;
}
[HNOI2017]抛硬币的更多相关文章
- bzoj 4830: [Hnoi2017]抛硬币 [范德蒙德卷积 扩展lucas]
4830: [Hnoi2017]抛硬币 题意:A投a次硬币,B投b次硬币,a比b正面朝上次数多的方案数,模\(10^k\). \(b \le a \le b+10000 \le 10^{15}, k ...
- 【BZOJ4830】[HNOI2017]抛硬币(组合计数,拓展卢卡斯定理)
[BZOJ4830][HNOI2017]抛硬币(组合计数,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 暴力是啥? 枚举\(A\)的次数和\(B\)的次数,然后直接组合数算就好了:\(\display ...
- bzoj 4830: [Hnoi2017]抛硬币
Description 小A和小B是一对好朋友,他们经常一起愉快的玩耍.最近小B沉迷于**师手游,天天刷本,根本无心搞学习.但是 已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生.勤勉的小A ...
- [AH/HNOI2017]抛硬币
题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到 SSR,让他非常怀疑人生.勤勉的小 A ...
- bzoj4830 hnoi2017 抛硬币
题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到 SSR,让他非常怀疑人生.勤勉的小 A ...
- luogu P3726 [AH2017/HNOI2017]抛硬币
传送门 我是真的弱,看题解都写了半天,,, 这题答案应该是\(\sum_{i=1}^{a}\binom{a}{i}\sum_{j=0}^{min(b,i-1)}\binom{b}{j}\) 上面那个式 ...
- 【刷题】BZOJ 4830 [Hnoi2017]抛硬币
Description 小A和小B是一对好朋友,他们经常一起愉快的玩耍.最近小B沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生.勤勉的小A为 ...
- [luogu3726 HNOI2017] 抛硬币 (拓展lucas)
传送门 数学真的太优秀了Orz 数据真的太优秀了Orz 题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月, ...
- [AH2017/HNOI2017]抛硬币(扩展lucas)
推式子+exlucas. 题意: 小 A 和小 B 是一对好朋友,两个人同时抛 b 次硬币,如果小 A 的正面朝上的次数大于小 B 正面朝上的次数,则小 A 获胜. 小 A 决定在小 B 没注意的时候 ...
随机推荐
- 脚本简介jQuery微信开放平台注册表单
脚本简介jQuery微信开放平台注册表单是一款仿微信开放平台的选项卡带步骤的注册表单验证jQuery代码 分享自:http://www.huiyi8.com/jiaoben/ 下载地址:http:// ...
- BZOJ 3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛:dp【前缀和优化】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3398 题意: 约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡 ...
- python-常用内置函数与装饰器
1.常用的python函数 abs 求绝对值 all 判断迭代器中所有的数据是否为真或者可迭代数据为空,返回真,否则返回假 any ...
- Java_HTTP_01_HttpClient
一. 二.参考文档 1. HttpClient官方文档 HttpClient官方文档中文翻译 1.HttpClient 4 实现文件下载 2.httpclient 上传文件.下载文件 3.httpcl ...
- Codeplus2017 12月赛——可做题1
题目:https://www.luogu.org/problemnew/show/P4030 可以发现一个矩阵是巧妙矩阵当且仅当其所有二阶子矩阵都是巧妙矩阵: 将不巧妙的二阶矩阵计为1,维护二维前缀和 ...
- C# Unit Test 备注
1. UT工程的编译一定要让依赖的dll在同一目录,即和测试目标dll运行的环境一样. 比如 Demo-UT测试Demo工程, 则Demo工程依赖的所有dll必须和Demo输出的可执行环境Demo.d ...
- python的logging模块详细使用demo
import logging import os from logging import handlers from datetime import datetime class MyLog(): d ...
- oracle针对中文排序
在oracle 9i之前,对中文的排序,是默认按2进制编码来进行排序的. 9i时增加了几种新的选择: 按中文拼音进行排序:SCHINESE_PINYIN_M 按中文部首进行排序:SCHINESE_RA ...
- editplus怎么在前后插入字符
快捷键:ctrl+h 未编辑之前: 源: 一:行首批量添加 查找"^" 替换为“我是行首aaa” 二: 行尾批量添加 查找"\n" 替换为“'bbb我是 ...
- Swoole 协程 MySQL 客户端与异步回调 MySQL 客户端的对比
Swoole 协程 MySql 客户端与 异步回调 MySql 客户端的对比 为什么要对比这两种不同模式的客户端? 异步 MySQL 回调客户端是虽然在 Swoole 1.8.6 版本就已经发布了, ...