传送门

非常显du然liu的一道题

就是求GCD

因为数据范围...

所以要上压位高精+非递归的辗转相减

关于辗转相减:

如果 A是二的倍数,B是二的倍数   那么GCD(A,B)=2 * GCD(A,B)

如果只有A是二的倍数   那么GCD(A,B)=GCD(A/2,B)

如果只有B是二的倍数   那么GCD(A,B)=GCD(A,B/2)

十分显然的结论...

然后不停地让大的数减去小的数

最后当它们相等时就是GCD了(因为大的减小的一直减到不能减就相当于取模)

int slove()
{
int A=read(),B=read(),i=,j=;
while(!(A&)) A>>=,i++;
while(!(B&)) B>>=,j++;
//先把A,B都除成奇数
//这样之后辗转相减时就不会出现两个数都是偶数的情况了
//可以减少判断次数
int cnt=min(i,j);
while()
{
if(A<B) swap(A,B);
if(A==B) return A<<cnt;
A=A-B;
while(!(A&)) A>>=;
}
}

普通的辗转相减法

然后就是恶心的压位高精了...

可以发现我们高精乘除都只乘除2,所以只要写高精乘2和高精除2以及高精减法就好了

重载运算符和压位都是基本操作了

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
typedef long long ll;
const ll wid=;
char ch[];
struct bigint
{
ll s[],len;
bigint() { memset(s,,sizeof(s)); len=; }
inline void read()
{
scanf("%s",ch+);
int l=strlen(ch+),t=,k=; len=(l+)/;
for(int i=l;i;i--)
{
if(!(l-i)%){ k=; t++; }
s[t]+=k*(ch[i]^); k*=;
}
}
inline void print()
{
if(!len) { printf("0\n"); return; }
printf("%lld",s[len]);
for(int i=len-;i;i--) printf("%08lld",s[i]);//除了第一位不足的位用0补
printf("\n");
}
inline bool operator < (const bigint &tmp) const {
if(len!=tmp.len) return len<tmp.len;
for(int i=tmp.len;i;i--) if(s[i]!=tmp.s[i]) return s[i]<tmp.s[i];
return ;
}
inline bool operator == (const bigint &tmp) const {
return !(tmp<*this)&&!(*this<tmp);
}
inline bigint operator - (const bigint &tmp) const {
bigint u; u.len=len;
for(int i=;i<=len;i++)
{
u.s[i]+=s[i]-tmp.s[i];
if(u.s[i]<) u.s[i]+=wid,u.s[i+]--;
}
while(!u.s[u.len]&&u.len) u.len--;
return u;
}
inline bool pd(){ return s[]&; }//判断奇偶
inline void div2()//除2
{
len+=;
for(int i=len;i;i--)
{
if(s[i]&) s[i-]+=wid;
s[i]>>=;
}
while(!s[len]&&len) len--;
}
inline void mul2()//乘2
{
for(int i=;i<=len;i++) s[i]*=;
len+=;
for(int i=;i<=len;i++)
{
s[i+]+=s[i]/wid;
s[i]%=wid;
}
while(!s[len]&&len) len--;
}
}a,b; void slove()
{
int i=,j=;
while(!a.pd()) a.div2(),i++;
while(!b.pd()) b.div2(),j++;
if(i>j) i=j;
while()
{
if(a<b) swap(a,b);
if(a==b) break;
a=a-b;
while(!a.pd()) a.div2();
}
for(int k=;k<=i;k++) a.mul2();
a.print();
} int main()
{
a.read(); b.read();
slove();
return ;
}

P2152 [SDOI2009]SuperGCD的更多相关文章

  1. P2152 [SDOI2009]SuperGCD 未完成

    辗转相减求a,b的gcd其实可以优化的: 1.若a为偶数,b为奇数:gcd(a,b)=gcd(a/2,b) 2.若a为奇数,b为偶数:gcd(a,b)=gcd(a,b/2) 3.若a,b都是偶数:gc ...

  2.  P2152 [SDOI2009]SuperGCD (luogu)

    Stein算法是一种计算两个数最大公约数的算法,是针对欧几里德算法在对大整数进行运算时,需要试商导致增加运算时间的缺陷而提出的改进算法. 算法思想: 由J. Stein 1961年提出的Stein算法 ...

  3. 洛谷 P2152 [SDOI2009]SuperGCD (高精度)

    这道题直接写了我两个多小时-- 主要是写高精度的时候还存在着一些小毛病,调了很久 在输入这一块卡了很久. 然后注意这里用while的形式写,不然会炸 最后即使我已经是用的万进制了,但是交上去还是有两个 ...

  4. 洛谷 P2152 [SDOI2009]SuperGCD

    题意简述 求两个整数a,b的最大公约数0 < a , b ≤ 10 ^ 10000. 题解思路 如果 a % 2 == 0 && b % 2 == 0 gcd(a,b) = gc ...

  5. BZOJ 1876: [SDOI2009]SuperGCD

    1876: [SDOI2009]SuperGCD Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 3060  Solved: 1036[Submit][St ...

  6. bzoj 1876 [SDOI2009]SuperGCD(高精度+更相减损)

    1876: [SDOI2009]SuperGCD Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 2384  Solved: 806[Submit][Sta ...

  7. BZOJ 1876: [SDOI2009]SuperGCD( 更相减损 + 高精度 )

    更相减损,要用高精度.... --------------------------------------------------------------- #include<cstdio> ...

  8. 【BZOJ1876】[SDOI2009]SuperGCD(数论,高精度)

    [BZOJ1876][SDOI2009]SuperGCD(数论,高精度) 题面 BZOJ 洛谷 题解 那些说数论只会\(gcd\)的人呢?我现在连\(gcd\)都不会,谁来教教我啊? 显然\(gcd\ ...

  9. [BZOJ1876][SDOI2009]superGCD(高精度)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1876 分析: 以为辗转相减会TLE呢……但是好像没这个数据……就这么水过去了…… 辗转 ...

随机推荐

  1. Java丨角色权限控制——数据库设计

    相信各位读者对于角色权限管理这个需求并不陌生.那么是怎么实现的呢?今天小编来说道说道! 1.首先我们来进行数据库的设计,如何设计数据库是实现权限控制的关键: 1)用户表: id:主键.自增.int n ...

  2. (转)C++经典面试题(最全,面中率最高)

    1.new.delete.malloc.free关系 delete会调用对象的析构函数,和new对应free只会释放内存,new调用构造函数.malloc与free是C++/C语言的标准库函数,new ...

  3. python二进制数据

    一直以来对python的二进制数据搞不清楚. 一.二进制显示格式与实际存储值区别 1.二进制数据在python中以字节(bytes)类型和字节数组类型(bytearray)保存着,前者数据固定,后者不 ...

  4. codeforces 706D D. Vasiliy's Multiset(trie树)

    题目链接: D. Vasiliy's Multiset time limit per test 4 seconds memory limit per test 256 megabytes input ...

  5. Qt之log数据展示模块简要实现

    Log模块主要用于实时测井数据的显示和测后曲线数据的预览和打印,为更好的展示对Qt中相关知识点的应用,特以Log模块为例对其进行简要实现. 内容导图: 一.功能需求 1.界面效果图 Log模块实现曲线 ...

  6. 1066 Bash 游戏

    传送门 1066 Bash游戏 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题   有一堆石子共有N个.A B两个人轮流拿,A先拿.每次最少拿1颗,最多拿K颗,拿到最后1 ...

  7. uC/OS-II源码分析(一)

    下载地址:http://www.micrium.com/ 它的特点: 1)开源, 2)可移植性,绝大部分代码用C写,硬件相关部分用汇编写, 3可固化, 4)可剪裁,这通过条件编译实现,使用#defin ...

  8. poj2411铺砖——状压DP

    题目:http://poj.org/problem?id=2411 状态压缩,一行的状态记为一个二进制数,从上往下逐行DP,答案输出最后一行填0的方案数. 代码如下: #include<iost ...

  9. Springboot学习七 spring的一些注解

    一 事务控制 @Service public class CityServiceImpl implements CityService { @Autowired private CityMapper ...

  10. 浅析C语言中strtol()函数与strtoul()函数的用法

    转自:http://www.jb51.net/article/71463.htm C语言strtol()函数:将字符串转换成long(长整型数) 头文件: ? 1 #include <stdli ...