HDU4126Genghis Khan the Conqueror(最小生成树+并查集)
Genghis Khan the Conqueror
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 327680/327680 K (Java/Others)
Total Submission(s): 1687 Accepted Submission(s): 501
Mongolian steppe, Genghis Khan founded a strong cavalry equipped by irony discipline, sabers and powder, and he became to the most fearsome conqueror in the history. He stretched the empire that resulted in the conquest of most of Eurasia. The following figure
(origin: Wikipedia) shows the territory of Mongol Empire at that time.
Our story is about Jebei Noyan(哲别), who was one of the most famous generals in Genghis Khan’s cavalry. Once his led the advance troop to invade a country named Pushtuar. The knights rolled up all the cities in Pushtuar rapidly. As Jebei Noyan’s advance troop
did not have enough soldiers, the conquest was temporary and vulnerable and he was waiting for the Genghis Khan’s reinforce. At the meantime, Jebei Noyan needed to set up many guarders on the road of the country in order to guarantee that his troop in each
city can send and receive messages safely and promptly through those roads.
There were N cities in Pushtuar and there were bidirectional roads connecting cities. If Jebei set up guarders on a road, it was totally safe to deliver messages between the two cities connected by the road. However setting up guarders on different road took
different cost based on the distance, road condition and the residual armed power nearby. Jebei had known the cost of setting up guarders on each road. He wanted to guarantee that each two cities can safely deliver messages either directly or indirectly and
the total cost was minimal.
Things will always get a little bit harder. As a sophisticated general, Jebei predicted that there would be one uprising happening in the country sooner or later which might increase the cost (setting up guarders) on exactly ONE road. Nevertheless he did not
know which road would be affected, but only got the information of some suspicious road cost changes. We assumed that the probability of each suspicious case was the same. Since that after the uprising happened, the plan of guarder setting should be rearranged
to achieve the minimal cost, Jebei Noyan wanted to know the new expected minimal total cost immediately based on current information.
For each test case, the first line contains two integers N and M (1<=N<=3000, 0<=M<=N×N), demonstrating the number of cities and roads in Pushtuar. Cities are numbered from 0 to N-1. In the each of the following M lines, there are three integers xi,
yi and ci(ci<=107), showing that there is a bidirectional road between xi and yi, while the cost of setting up guarders on this road is ci. We guarantee that the graph is connected.
The total cost of the graph is less or equal to 109.
The next line contains an integer Q (1<=Q<=10000) representing the number of suspicious road cost changes. In the following Q lines, each line contains three integers Xi, Yi and Ci showing that the cost of road (Xi,
Yi) may change to Ci (Ci<=107). We guarantee that the road always exists and Ci is larger than the original cost (we guarantee that there is at most one road connecting two cities directly). Please note
that the probability of each suspicious road cost change is the same.
3 3
0 1 3
0 2 2
1 2 5
3
0 2 3
1 2 6
0 1 6
0 0
6.0000HintThe initial minimal cost is 5 by connecting city 0 to 1 and city 0 to 2. In the first suspicious case, the minimal total cost is increased to 6;
the second case remains 5; the third case is increased to 7. As the result, the expected cost is (5+6+7)/3 = 6.
#include<stdio.h>
#include<vector>
#include<algorithm>
using namespace std; const int N = 3005;
const double inf = 0x3f3f3f3f;
struct EDG
{
int u,v;
double c;
};
struct TO
{
int v;
double c;
}; vector<TO>tmap[N];
EDG edg[N];
int n,treeEdg[N][N];
double node[N];
EDG tedg[N*N];
int fath[N]; int cmp(EDG a,EDG b)
{
return a.c<b.c;
}
int findfath(int x)
{
if(x==fath[x])
return fath[x];
fath[x]=findfath(fath[x]);
return fath[x];
}
double MST(int m)
{
double sum=0;
int k=0;
for(int i=0; i<m; i++)
{
int x=findfath(tedg[i].u);
int y=findfath(tedg[i].v);
if(x!=y)
{
k++;
treeEdg[tedg[i].u][tedg[i].v]=treeEdg[tedg[i].v][tedg[i].u]=k;
edg[k].u=tedg[i].u; edg[k].v=tedg[i].v; edg[k].c=tedg[i].c;
fath[x]=y; sum+=tedg[i].c;
if(k==n-1)
break;
}
}
return sum;
}
int main()
{
int m,q,a,b;
double c,ans,sum,tc;
TO ss; while(scanf("%d%d",&n,&m)>0&&n+m!=0)
{
for(int i=0;i<=n;i++)
{
fath[i]=i;
for(int j=0;j<=n;j++)
treeEdg[i][j]=N;
} for(int i=0;i<m;i++)
{
scanf("%d%d%lf",&a,&b,&c);
tedg[i].u=a;
tedg[i].v=b;
tedg[i].c=c;
}
sort(tedg,tedg+m,cmp);
sum=MST(m);
scanf("%d",&q);
ans=0;
for(int j=0;j<q;j++)
{
scanf("%d%d%lf",&a,&b,&c); if(treeEdg[a][b]==N)
ans+=sum;
else
{
for(int i=0;i<=n;i++)
fath[i]=i;
for(int i=1;i<n;i++)
{
if(treeEdg[a][b]==i)
{
tc=edg[i].c; continue;
}
int x=findfath(edg[i].u);
int y=findfath(edg[i].v);
fath[x]=y;
}
int flag=0;
for(int i=0;i<m&&tedg[i].c<c;i++)
{
if(treeEdg[tedg[i].u][tedg[i].v]!=N)
continue; int x=findfath(tedg[i].u);
int y=findfath(tedg[i].v);
fath[x]=y;
x=findfath(a);
y=findfath(b);
if(x==y)
{
ans=ans+sum-tc+tedg[i].c; flag=1; break;
}
}
if(flag==0)
ans=ans+sum-tc+c;
}
}
printf("%.4lf\n",ans/(q*1.0));
}
}
HDU4126Genghis Khan the Conqueror(最小生成树+并查集)的更多相关文章
- hdu4126Genghis Khan the Conqueror (最小生成树+树形dp)
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 327680/327680 K (Java/Others) Total Submiss ...
- UVA 1395 苗条的生成树(最小生成树+并查集)
苗条的生成树 紫书P358 这题最后坑了我20分钟,怎么想都对了啊,为什么就wa了呢,最后才发现,是并查集的编号搞错了. 题目编号从1开始,我并查集编号从0开始 = = 图论这种题真的要记住啊!!题目 ...
- CSP 201703-4 地铁修建【最小生成树+并查集】
问题描述 试题编号: 201703-4 试题名称: 地铁修建 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 A市有n个交通枢纽,其中1号和n号非常重要,为了加强运输能力,A市 ...
- HDU 4126 Genghis Khan the Conqueror 最小生成树+树形dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4126 Genghis Khan the Conqueror Time Limit: 10000/50 ...
- 关于最小生成树(并查集)prime和kruskal
适合对并查集有一定理解的人. 新手可能看不懂吧.... 并查集简单点说就是将相关的2个数字联系起来 比如 房子 1 2 3 4 5 6 ...
- 【BZOJ4144】[AMPPZ2014]Petrol(最短路+最小生成树+并查集)
Description 给定一个n个点.m条边的带权无向图,其中有s个点是加油站. 每辆车都有一个油量上限b,即每次行走距离不能超过b,但在加油站可以补满. q次询问,每次给出x,y,b,表示出发点是 ...
- bzoj 3559: [Ctsc2014]图的分割【最小生成树+并查集】
读题两小时系列-- 在读懂题意之后,发现M(c)就是c这块最大权割边也就是的最小生成树的最大权边的权值,所以整个问题都可以在MST的过程中解决(M和c都是跟着并查集变的) 不过不是真的最小生成树,是合 ...
- Regional Changchun Online--Travel(最小生成树&& 并查集)
Travel Time Limit: 1500/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Total S ...
- UOJ14 UER #1 DZY Loves Graph(最小生成树+并查集)
显然可以用可持久化并查集实现.考虑更简单的做法.如果没有撤销操作,用带撤销并查集暴力模拟即可,复杂度显然可以均摊.加上撤销操作,删除操作的复杂度不再能均摊,但注意到我们在删除时就可以知道他会不会被撤销 ...
随机推荐
- MySQL 表数据的导入导出
数据导出 1. 使用 SELECT ...INTO OUTFILE ...命令来导出数据,具体语法如下. mysql> SELECT * FROM tablename INTO OUTFILE ...
- Ruby 符号【转】
Ruby的符号足以让很多初学者迷惑上一段时间,看过本章节后,或许会解开你心中的疑惑. 在Ruby中,一个符号是就是一个Symbol类的实例,它的语法是在通常的变量名前加一个冒号,如 :my_sy Ru ...
- java EE技术体系——CLF平台API开发注意事项(2)——后端测试
前言:上篇博客说到了关于开发中的一些情况,这篇博客主要说明一些关于测试的内容. 一.宏观说明 要求:每一个API都必须经过测试. 备注:如果涉及到服务间调用(如权限和基础数据),而对方服务不可用时 ...
- Iterator设计模式--jdk1.7
参照:http://www.cnblogs.com/tstd/p/5049338.html java.util.Iterator<E>是一个接口,它的定义如下: public interf ...
- [luoguP2526] [SHOI2001]小狗散步(二分图最大匹配)
传送门 简直就是模板题啊! #include <cmath> #include <cstdio> #include <cstring> #include <i ...
- 算法复习——区间dp
感觉对区间dp也不好说些什么直接照搬讲义了2333 例题: 1.引水入城(洛谷1514) 这道题先开始看不出来到底和区间dp有什么卵关系···· 首先肯定是bfs暴力判一判可以覆盖到哪些城市····无 ...
- java面试题之谈谈你对java的理解
平台无关性:一处编译到处运行 GC:不用像c++那样手动释放堆内容 语言特性:泛型.反射.lamda表达式 面向对象:封装.继承.多态 类库:集合.并发库.网络库.IO库 异常处理
- Fiddler修改请求的参数,重新执行请求
打开Fiddler4,打开浏览器,输入请求地址,例如:http://www.meizu.com 1. 拿出host信息:tongji.meizu.com 2. 拿出URL信息:/flow/mc?v ...
- Cython 一篇通
Cython的类型 1 类型定义 1.1 定义一个C变量: 1.1.1 在Cython里定义一个C变量和C语言类似,不同的地方就是在声明的最前面要加上cdef,另外,末尾不用加分号";“如: ...
- os.system() 和 os.popen()
1.os.popen(command[, mode[, bufsize]]) os.system(command) 2.os.popen() 功能强于os.system() , os.popen() ...