HDU4126Genghis Khan the Conqueror(最小生成树+并查集)
Genghis Khan the Conqueror
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 327680/327680 K (Java/Others)
Total Submission(s): 1687 Accepted Submission(s): 501
Mongolian steppe, Genghis Khan founded a strong cavalry equipped by irony discipline, sabers and powder, and he became to the most fearsome conqueror in the history. He stretched the empire that resulted in the conquest of most of Eurasia. The following figure
(origin: Wikipedia) shows the territory of Mongol Empire at that time.
Our story is about Jebei Noyan(哲别), who was one of the most famous generals in Genghis Khan’s cavalry. Once his led the advance troop to invade a country named Pushtuar. The knights rolled up all the cities in Pushtuar rapidly. As Jebei Noyan’s advance troop
did not have enough soldiers, the conquest was temporary and vulnerable and he was waiting for the Genghis Khan’s reinforce. At the meantime, Jebei Noyan needed to set up many guarders on the road of the country in order to guarantee that his troop in each
city can send and receive messages safely and promptly through those roads.
There were N cities in Pushtuar and there were bidirectional roads connecting cities. If Jebei set up guarders on a road, it was totally safe to deliver messages between the two cities connected by the road. However setting up guarders on different road took
different cost based on the distance, road condition and the residual armed power nearby. Jebei had known the cost of setting up guarders on each road. He wanted to guarantee that each two cities can safely deliver messages either directly or indirectly and
the total cost was minimal.
Things will always get a little bit harder. As a sophisticated general, Jebei predicted that there would be one uprising happening in the country sooner or later which might increase the cost (setting up guarders) on exactly ONE road. Nevertheless he did not
know which road would be affected, but only got the information of some suspicious road cost changes. We assumed that the probability of each suspicious case was the same. Since that after the uprising happened, the plan of guarder setting should be rearranged
to achieve the minimal cost, Jebei Noyan wanted to know the new expected minimal total cost immediately based on current information.
For each test case, the first line contains two integers N and M (1<=N<=3000, 0<=M<=N×N), demonstrating the number of cities and roads in Pushtuar. Cities are numbered from 0 to N-1. In the each of the following M lines, there are three integers xi,
yi and ci(ci<=107), showing that there is a bidirectional road between xi and yi, while the cost of setting up guarders on this road is ci. We guarantee that the graph is connected.
The total cost of the graph is less or equal to 109.
The next line contains an integer Q (1<=Q<=10000) representing the number of suspicious road cost changes. In the following Q lines, each line contains three integers Xi, Yi and Ci showing that the cost of road (Xi,
Yi) may change to Ci (Ci<=107). We guarantee that the road always exists and Ci is larger than the original cost (we guarantee that there is at most one road connecting two cities directly). Please note
that the probability of each suspicious road cost change is the same.
3 3
0 1 3
0 2 2
1 2 5
3
0 2 3
1 2 6
0 1 6
0 0
6.0000HintThe initial minimal cost is 5 by connecting city 0 to 1 and city 0 to 2. In the first suspicious case, the minimal total cost is increased to 6;
the second case remains 5; the third case is increased to 7. As the result, the expected cost is (5+6+7)/3 = 6.
#include<stdio.h>
#include<vector>
#include<algorithm>
using namespace std; const int N = 3005;
const double inf = 0x3f3f3f3f;
struct EDG
{
int u,v;
double c;
};
struct TO
{
int v;
double c;
}; vector<TO>tmap[N];
EDG edg[N];
int n,treeEdg[N][N];
double node[N];
EDG tedg[N*N];
int fath[N]; int cmp(EDG a,EDG b)
{
return a.c<b.c;
}
int findfath(int x)
{
if(x==fath[x])
return fath[x];
fath[x]=findfath(fath[x]);
return fath[x];
}
double MST(int m)
{
double sum=0;
int k=0;
for(int i=0; i<m; i++)
{
int x=findfath(tedg[i].u);
int y=findfath(tedg[i].v);
if(x!=y)
{
k++;
treeEdg[tedg[i].u][tedg[i].v]=treeEdg[tedg[i].v][tedg[i].u]=k;
edg[k].u=tedg[i].u; edg[k].v=tedg[i].v; edg[k].c=tedg[i].c;
fath[x]=y; sum+=tedg[i].c;
if(k==n-1)
break;
}
}
return sum;
}
int main()
{
int m,q,a,b;
double c,ans,sum,tc;
TO ss; while(scanf("%d%d",&n,&m)>0&&n+m!=0)
{
for(int i=0;i<=n;i++)
{
fath[i]=i;
for(int j=0;j<=n;j++)
treeEdg[i][j]=N;
} for(int i=0;i<m;i++)
{
scanf("%d%d%lf",&a,&b,&c);
tedg[i].u=a;
tedg[i].v=b;
tedg[i].c=c;
}
sort(tedg,tedg+m,cmp);
sum=MST(m);
scanf("%d",&q);
ans=0;
for(int j=0;j<q;j++)
{
scanf("%d%d%lf",&a,&b,&c); if(treeEdg[a][b]==N)
ans+=sum;
else
{
for(int i=0;i<=n;i++)
fath[i]=i;
for(int i=1;i<n;i++)
{
if(treeEdg[a][b]==i)
{
tc=edg[i].c; continue;
}
int x=findfath(edg[i].u);
int y=findfath(edg[i].v);
fath[x]=y;
}
int flag=0;
for(int i=0;i<m&&tedg[i].c<c;i++)
{
if(treeEdg[tedg[i].u][tedg[i].v]!=N)
continue; int x=findfath(tedg[i].u);
int y=findfath(tedg[i].v);
fath[x]=y;
x=findfath(a);
y=findfath(b);
if(x==y)
{
ans=ans+sum-tc+tedg[i].c; flag=1; break;
}
}
if(flag==0)
ans=ans+sum-tc+c;
}
}
printf("%.4lf\n",ans/(q*1.0));
}
}
HDU4126Genghis Khan the Conqueror(最小生成树+并查集)的更多相关文章
- hdu4126Genghis Khan the Conqueror (最小生成树+树形dp)
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 327680/327680 K (Java/Others) Total Submiss ...
- UVA 1395 苗条的生成树(最小生成树+并查集)
苗条的生成树 紫书P358 这题最后坑了我20分钟,怎么想都对了啊,为什么就wa了呢,最后才发现,是并查集的编号搞错了. 题目编号从1开始,我并查集编号从0开始 = = 图论这种题真的要记住啊!!题目 ...
- CSP 201703-4 地铁修建【最小生成树+并查集】
问题描述 试题编号: 201703-4 试题名称: 地铁修建 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 A市有n个交通枢纽,其中1号和n号非常重要,为了加强运输能力,A市 ...
- HDU 4126 Genghis Khan the Conqueror 最小生成树+树形dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4126 Genghis Khan the Conqueror Time Limit: 10000/50 ...
- 关于最小生成树(并查集)prime和kruskal
适合对并查集有一定理解的人. 新手可能看不懂吧.... 并查集简单点说就是将相关的2个数字联系起来 比如 房子 1 2 3 4 5 6 ...
- 【BZOJ4144】[AMPPZ2014]Petrol(最短路+最小生成树+并查集)
Description 给定一个n个点.m条边的带权无向图,其中有s个点是加油站. 每辆车都有一个油量上限b,即每次行走距离不能超过b,但在加油站可以补满. q次询问,每次给出x,y,b,表示出发点是 ...
- bzoj 3559: [Ctsc2014]图的分割【最小生成树+并查集】
读题两小时系列-- 在读懂题意之后,发现M(c)就是c这块最大权割边也就是的最小生成树的最大权边的权值,所以整个问题都可以在MST的过程中解决(M和c都是跟着并查集变的) 不过不是真的最小生成树,是合 ...
- Regional Changchun Online--Travel(最小生成树&& 并查集)
Travel Time Limit: 1500/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Total S ...
- UOJ14 UER #1 DZY Loves Graph(最小生成树+并查集)
显然可以用可持久化并查集实现.考虑更简单的做法.如果没有撤销操作,用带撤销并查集暴力模拟即可,复杂度显然可以均摊.加上撤销操作,删除操作的复杂度不再能均摊,但注意到我们在删除时就可以知道他会不会被撤销 ...
随机推荐
- rocketmq源码分析4-事务消息实现原理
为什么消息要具备事务能力 参见还是比较清晰的.简单的说 就是在你业务逻辑过程中,需要发送一条消息给订阅消息的人,但是期望是 此逻辑过程完全成功完成之后才能使订阅者收到消息.业务逻辑过程 假设是这样的: ...
- ef添加数据时出错 System.Data.Entity.Infrastructure.DbUpdateConcurrencyException”类型的异常
找半天才找到 ef添加数据时出错原因:数据库表中没有主键 ,就算表中有自增列 Added方法也会报错: - this._db.SaveChanges() “this._db.SaveCh ...
- js的编码函数
js对文字进行编码,涉及3个函数:escape,encodeURI,encodeURIComponent,相应3个解码函数:unescape,decodeURI,decodeURIComponent ...
- jsonp跨域请求发布出去
最近在做运动城项目,这一个项目下面有多个子项目,如主数据项目,pos项目等.主数据项目的域名为www.topmall.com,POS项目的域名为pos.topmall.com.即两个项目的主域名相同, ...
- lambda遍历的精简
本文转自 http://it.deepinmind.com/java%E5%87%BD%E6%95%B0%E5%BC%8F%E7%BC%96%E7%A8%8B/2014/03/15/Java%E5%8 ...
- Leetcode 115 Distinct Subsequences 解题报告
Distinct Subsequences Total Accepted: 38466 Total Submissions: 143567My Submissions Question Solutio ...
- 刷题总结:排序机械臂(石室中学oj)(splay)
题目: 题目描述 为了把工厂中高低不等的物品按从低到高排好序,工程师发明了一种排序机械臂.它遵循一个简单的排序规则,第一次操作找到最低的物品位置 P1,并把从左起第 1 个至第 P1 个之间的物品反序 ...
- [TJOI2018] Xor 异或 (可持久化Trie,树链剖分)
题目描述 现在有一颗以 1 为根节点的由 n 个节点组成的树,树上每个节点上都有一个权值 \(v_i\).现在有 Q 次操作,操作如下: 1 x y :查询节点 x 的子树中与 y 异或结果的最大值. ...
- SpringBoot jackson传入List引起的坑
一.jackson无法解析value为[]的json 当入参为{xxxx1:[1,2,3],xxxx2:[obj1,obj2,obj3]}时,springmvn controller接收入参写为Lon ...
- bzoj 3190 [JLOI2013]赛车 半平面交+细节处理
题目大意 这里有一场赛车比赛正在进行,赛场上一共有N辆车,分别称为g1,g2--gn.赛道是一条无限长的直线.最初,gi位于距离起跑线前进ki的位置.比赛开始后,车辆gi将会以vi单位每秒的恒定速度行 ...