Graham扫描法 --求凸包
前言:
首先,什么是凸包?
假设平面上有p0~p12共13个点,过某些点作一个多边形,使这个多边形能把所有点都“包”起来。当这个多边形是凸多边形的时候,我们就叫它“凸包”。如下图:
然后,什么是凸包问题?
我们把这些点放在二维坐标系里面,那么每个点都能用 (x,y) 来表示。
现给出点的数目13,和各个点的坐标。求构成凸包的点?
Graham扫描法
时间复杂度:O(n㏒n)
思路:Graham扫描的思想和Jarris步进法类似,也是先找到凸包上的一个点,然后从那个点开始按逆时针方向逐个找凸包上的点,但它不是利用夹角。
步骤:
- 把所有点放在二维坐标系中,则纵坐标最小的点一定是凸包上的点,如图中的P0。
- 把所有点的坐标平移一下,使 P0 作为原点,如上图。
- 计算各个点相对于 P0 的幅角 α ,按从小到大的顺序对各个点排序。当 α 相同时,距离 P0 比较近的排在前面。例如上图得到的结果为 P1,P2,P3,P4,P5,P6,P7,P8。我们由几何知识可以知道,结果中第一个点 P1 和最后一个点 P8 一定是凸包上的点。
(以上是准备步骤,以下开始求凸包)
以上,我们已经知道了凸包上的第一个点 P0 和第二个点 P1,我们把它们放在栈里面。现在从步骤3求得的那个结果里,把 P1 后面的那个点拿出来做当前点,即 P2 。接下来开始找第三个点: - 连接P0和栈顶的那个点,得到直线 L 。看当前点是在直线 L 的右边还是左边。如果在直线的右边就执行步骤5;如果在直线上,或者在直线的左边就执行步骤6。
- 如果在右边,则栈顶的那个元素不是凸包上的点,把栈顶元素出栈。执行步骤4。
- 当前点是凸包上的点,把它压入栈,执行步骤7。
- 检查当前的点 P2 是不是步骤3那个结果的最后一个元素。是最后一个元素的话就结束。如果不是的话就把 P2 后面那个点做当前点,返回步骤4。
最后,栈中的元素就是凸包上的点了。
以下为用Graham扫描法动态求解的过程:
代码实现:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<stack>
#include <math.h>
#include <stdio.h>
#include <algorithm>
using namespace std;
struct point
{
long long x;
long long y;
} P[],S[]; //P 中存点,S模拟栈存凸包的点; long long xx;
long long yy; // 计算各个点相对于 P0 的幅角 α ,按从小到大的顺序对各个点排序。当 α 相同时,距离 P0 比较近的排在前面。
bool cmp(struct point a,struct point b)
{
if(atan2(a.y-yy,a.x-xx)!=atan2(b.y-yy,b.x-xx))
return (atan2(a.y-yy,a.x-xx))<(atan2(b.y-yy,b.x-xx));
return a.x<b.x;
} //叉积判断点的位置
long long CJ(long long x1,long long y1,long long x2,long long y2)
{
return (x1*y2-x2*y1);
} long long Compare(struct point a,struct point b,struct point c)
{
return CJ((b.x-a.x),(b.y-a.y),(c.x-a.x),(c.y-a.y));
} int main()
{
int n,i,j;
while(~scanf("%d",&n))
{
int top = ;
yy = +;
for(i=;i<n;i++)
{
scanf("%lld%lld",&P[i].x,&P[i].y);
if(P[i].y<yy)
{
yy = P[i].y;
xx = P[i].x;
j = i;
}
}
P[j] = P[];
sort(P+,P+n,cmp);
S[].x = xx;
S[].y = yy;
S[] = P[];
for(i = ;i<n;)
{
if(top&&(Compare(S[top-],S[top],P[i])<)) top--;
else S[++top] = P[i++];
}
for(i=;i<=top;i++)
printf("%lld %lld\n",S[i].x,S[i].y);
}
return ;
}
Graham扫描法 --求凸包的更多相关文章
- (模板)poj1113(graham扫描法求凸包)
题目链接:https://vjudge.net/problem/POJ-1113 题意:简化下题意即求凸包的周长+2×PI×r. 思路:用graham求凸包,模板是kuangbin的. AC code ...
- 关于graham扫描法求凸包的小记
1.首先,凸包是啥: 若是在二维平面上,则一般的,给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边型,它能包含点集中所有的点. ───────────────────────────── ...
- 使用Graham扫描法求二维凸包的一个程序
#include <iostream> #include <cstring> #include <cstdlib> #include <cmath> # ...
- Graham 扫描法找凸包(convexHull)
凸包定义 通俗的话来解释凸包:给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边型,它能包含点集中所有的点  Graham扫描法 由最底的一点 \(p_1\) 开始(如果有多个这样的点, ...
- [BZOJ1069][SCOI2007]最大土地面积(水平扫描法求凸包+旋转卡壳)
题意:在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成. 的多边形面积最大.n<=2000. 先求凸包,再枚举对角线,随着对角线的斜率上升,另外两 ...
- nyoj-78-圈水池(Graham算法求凸包)
题目链接 /* Name:nyoj-78-圈水池 Copyright: Author: Date: 2018/4/27 9:52:48 Description: Graham求凸包 zyj大佬的模板, ...
- [poj1113][Wall] (水平序+graham算法 求凸包)
Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall ...
- (模板)graham扫描法、andrew算法求凸包
凸包算法讲解:Click Here 题目链接:https://vjudge.net/problem/POJ-1113 题意:简化下题意即求凸包的周长+2×PI×r. 思路:用graham求凸包,模板是 ...
- 【BZOJ-1670】Building the Moat护城河的挖掘 Graham扫描法 + 凸包
1670: [Usaco2006 Oct]Building the Moat护城河的挖掘 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 464 Solv ...
随机推荐
- UVA 562 Dividing coins 分硬币(01背包,简单变形)
题意:一袋硬币两人分,要么公平分,要么不公平,如果能公平分,输出0,否则输出分成两半的最小差距. 思路:将提供的整袋钱的总价取一半来进行01背包,如果能分出出来,就是最佳分法.否则背包容量为一半总价的 ...
- 爬去豆瓣图书top250数据存储到csv中
from lxml import etree import requests import csv fp=open('C://Users/Administrator/Desktop/lianxi/do ...
- python基础教程总结8——特殊方法,属性,迭代器,生成器,八皇后问题
1. 重写一般方法和特殊的构造方法 1.1 如果一个方法在B类的一个实例中被调用(或一个属性被访问),但在B类中没有找到该方法,那么会去它的超类A里面找. class A: ... def hello ...
- IM云通信行业步入快车道,谁将成为代表中国的全球IM“独角兽”?
2016年,Twilio的成功上市,以及抢眼的股价表现,拓宽了全球云通信行业的想象空间,行业内公司估值水平也集体上调. 在中国,IM云通信行业也从2016年开始进入了一个“黄金发展时期”,一批如融云. ...
- 第008课_第1个ARM落版程序及引申
form:第008课_第1个ARM裸板程序及引申 第001节_辅线1_硬件知识_LED原理图 当我们学习C语言的时候,我们会写个Hello程序.那当我们下ARM程序,也该有一个简单的程序引领我们入门, ...
- Python——print用法详解
1.print语法格式 print()函数具有丰富的功能,详细语法格式如下:print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=Fa ...
- 采用maven 对tomcat 进行自动部署
在工作过程中经常会遇到项目频繁发不到额过程,而且在这个过程中会一直进行一些简单但是繁琐的重复性工程 1.打war 包 2.停掉tomcat 3.copy war 包 4.启动tomcat 听说mave ...
- 浅谈JavaScript中的正则表达式(适用初学者观看)
浅谈JavaScript中的正则表达式 1.什么是正则表达式(RegExp)? 官方定义: 正则表达式是一种特殊的字符串模式,用于匹配一组字符串,就好比用模具做产品,而正则就是这个模具,定义一种规则去 ...
- cesium底图加载底图切换 基于天地图服务
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 【转】本人常用资源整理(ing...)
Deep Learning(深度学习): ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一 ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习) ...