分析:

  假设在第一个树上我们有一个长度为x的环,在第二树上我们有一个长度为y的环,那么可以在叉积树上构造出$\binom{x+y}{x}$个长度为x+y的环

  问题的关键就变成了如何统计出在一个树上的长度为i的环的个数

  设$f(u,v,k)$表示从u点出发走k步回到u点,中途不经过点v的方案数,其中v是u的相邻点

  考虑求解的转移过程,一定是从u走到某个邻接点w(w!=v),然后从w走到w(不经过u),然后再回到u,于是有转移方程

  

  这个是$O(n^2k^2)$的,但明显里面的w不需要枚举,只需要拿sum减去w=v的情况就行了,于是变成了$O(nk^2)$

 #include<bits/stdc++.h>
using namespace std;
#define mp make_pair
const int maxn=,mod=;
int k;
int ans;
int C[][];
void inc(int &a,int b)
{
a=(a+b)%mod;
}
struct wjmzbmr
{
int n;
vector<int> g[maxn+];
vector<int> dp[][maxn+];
int sum[][maxn+];
int ans[maxn+],sz[maxn+];
map<pair<int,int>,int> s;
void init()
{
for(int i=;i<n;++i)
{
int u,v;
scanf("%d%d",&u,&v);
g[u].push_back(v),g[v].push_back(u);
}
for(int i=;i<=n;++i)
for(int j=;j<g[i].size();++j)
s[mp(i,g[i][j])]=j;
for(int i=;i<=n;++i) sz[i]=g[i].size(),g[i].push_back();
for(int t=;t<=k;++t)
for(int i=;i<=n;++i)
dp[t][i].resize(sz[i]+,);
}
void work()
{
for(int i=;i<=n;++i)
for(int j=;j<=sz[i];++j)
{ dp[][i][j]=;
inc(sum[][g[i][j]],);
}
for(int i=;i<=k;++i)
for(int u=;u<=n;++u)
for(int j=;j<=sz[u];++j)
{
int v;
if(j<sz[u]) v=g[u][j];else v=;
int id;
if(v==) id=;
else
id=s[mp(v,u)];
for(int t=;t<=i-;++t)
dp[i][u][j]=((dp[i][u][j]+1LL*dp[i-t-][u][j]*(sum[t][u]-dp[t][v][id])%mod)%mod+mod)%mod;
inc(sum[i][v],dp[i][u][j]);
}
for(int i=;i<=k;i+=)
for(int u=;u<=n;++u)
inc(ans[i],dp[i][u][sz[u]]);
}
}tree[];
int main()
{
//freopen("ce.in","r",stdin);
scanf("%d%d%d",&tree[].n,&tree[].n,&k);
tree[].init(),tree[].init();
tree[].work();
tree[].work();
C[][]=;
for(int i=;i<=k;++i)
{
C[i][]=;
for(int j=;j<=i;++j)
C[i][j]=(C[i-][j]+C[i-][j-])%mod;
}
for(int i=;i<=k;++i)
inc(ans,int(1LL*tree[].ans[i]*tree[].ans[k-i]%mod*C[k][i]%mod));
printf("%d\n",ans);
return ;
}

CF997D的更多相关文章

  1. 997D Cycles in product

    传送门 题目大意 https://www.luogu.org/problemnew/show/CF997D 分析 我们发现两棵树互不相关 于是我们可以分别求出两棵树的信息 我们点分,人啊按后设f[i] ...

随机推荐

  1. 01 Django基础知识

    相关概念 软件框架 一个公司是由公司中的各部部门来组成的,每一个部门拥有特定的职能,部门与部门之间通过相互的配合来完成让公司运转起来. 一个软件框架是由其中各个软件模块组成的,每一个模块都有特定的功能 ...

  2. python之函数基础总结

    定义:函数是指将一组语句的集合通过一个名字(函数名)封装起来,要想执行这个函数,只需调用其函数名即可. def sayhi(name): print("Hello, %s, I', nobo ...

  3. C#中的扩展方法详解

    “扩展方法使您能够向现有类型“添加”方法,而无需创建新的派生类型.重新编译或以其他方式修改原始类型.”这是msdn上说的,也就是你可以对String,Int,DataRow,DataTable等这些类 ...

  4. Hydux: 一个 Elm-like 的 全功能的 Redux 替代品

    在学习和使用 Fable + Elmish 一段时间之后,对 Elm 架构有了更具体的了解, 和预料中的一样,Redux 这种来自 Elm 的风格果然还是和强类型的 Meta Language 语言更 ...

  5. Debian下无root权限使用Python访问Oracle

    这篇文章的起因是,在公司的服务器上没有root权限,但是需要使用 Python 访问 Oracle,而不管是使用 pip 安装组件还是安装 Oracle 的 client,都需要相应权限.本文即解决该 ...

  6. poj1985&&第四次CCF软件认证第4题 求树的直径

    Cow Marathon Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 4216   Accepted: 2137 Case ...

  7. hihoCoder #1349 Nature Numbers

    题目大意 考虑自然数构成的序列 $a$:$01234567891011\dots$,序列下标从 $0$ 开始,即 $a_0 =0, a_1 = 1$ . 求 $a_n$($0\le n\le 10^{ ...

  8. [OJ#63]树句节够提

    [OJ#63]树句节够提 试题描述 给定一棵节点数为 N 的有根树,其中 1 号点是根节点,除此之外第 i 个节点的父亲为 fi.每个节点有一个权值 Ai,所有边权均为 1. 给定 Q 个询问,每个询 ...

  9. NOIP2012开车旅行 【倍增】

    题目 小 A 和小 B 决定利用假期外出旅行,他们将想去的城市从 1 到 N 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i 的海拔高度为Hi,城市 i 和城 ...

  10. 使用router.push()进行页面跳转的问题

    看着官网的文档直接router.push()这样会报错router undefind,需要写成this.$router.push()才可以