初始化 cdev 后,需要把它添加到系统中去。为此可以调用 cdev_add()函数。传入cdev 结构的指针,起始设备编号,以及设备编号范围。

函数首先将分配的设备号与设备数目保存进cdev结构体中。然后再讲cdev结构体记录在一个 kobj_map 结构的 cdev_map 变量中。

 /**
* cdev_add() - add a char device to the system
* @p: the cdev structure for the device
* @dev: the first device number for which this device is responsible
* @count: the number of consecutive minor numbers corresponding to this
* device
*
* cdev_add() adds the device represented by @p to the system, making it
* live immediately. A negative error code is returned on failure.
*/
int cdev_add(struct cdev *p, dev_t dev, unsigned count)
{
p->dev = dev;
p->count = count;
return kobj_map(cdev_map, dev, count, NULL, exact_match, exact_lock, p);
}

内核中所有都字符设备都会记录在一个 kobj_map 结构的 cdev_map 变量中。这个结构的变量中包含一个散列表用来快速存取所有的对象。kobj_map() 函数就是用来把字符设备编号和 cdev 结构变量一起保存到 cdev_map 这个散列表里。当后续要打开一个字符设备文件时,通过调用 kobj_lookup() 函数,根据设备编号就可以找到 cdev 结构变量,从而取出其中的 ops 字段。

kobj_map函数中哈希表的实现原理和前面注册分配设备号中的几乎完全一样,通过要加入系统的设备的主设备号major(major=MAJOR(dev))来获得probes数组的索引值i(i = major % 255),然后把一个类型为struct probe的节点对象加入到probes[i]所管理的链表中,如图2-6所示。其中struct probe所在的矩形块中的深色部分是我们重点关注的内容,记录了当前正在加入系统的字符设备对象的有关信息。其中,dev是它的设备号,range是从次设备号开始连续的设备数量,data是一void *变量,指向当前正要加入系统的设备对象指针p。图2-6展示了两个满足主设备号major % 255 = 2的字符设备通过调用cdev_add之后,cdev_map所展现出来的数据结构状态。

所以,简单地说,设备驱动程序通过调用cdev_add把它所管理的设备对象的指针嵌入到一个类型为struct probe的节点之中,然后再把该节点加入到cdev_map所实现的哈希链表中。对系统而言,当设备驱动程序成功调用了cdev_add之后,就意味着一个字符设备对象已经加入到了系统,在需要的时候,系统就可以找到它。对用户态的程序而言,cdev_add调用之后,就已经可以通过文件系统的接口呼叫到我们的驱动程序。

 static struct kobj_map *cdev_map;
typedef struct kobject *kobj_probe_t(dev_t, int *, void *);
struct kobj_map {
struct probe {
struct probe *next;
dev_t dev;
unsigned long range;
struct module *owner;
kobj_probe_t *get;
int (*lock)(dev_t, void *);
void *data;
} *probes[];
struct mutex *lock;
};

 //cdev_add(struct cdev *p, dev_t dev, unsigned count)
// 设备号, 设备数目, 匹配函数, 锁定函数, cdev指针
//kobj_map(cdev_map, dev, count, NULL, exact_match, exact_lock, p);
int kobj_map(struct kobj_map *domain, dev_t dev, unsigned long range,
struct module *module, kobj_probe_t *probe,
int (*lock)(dev_t, void *), void *data)
{
unsigned n = MAJOR(dev + range - ) - MAJOR(dev) + ;//判断占用几个主设备号
unsigned index = MAJOR(dev);
unsigned i;
struct probe *p; if (n > )
n = ; p = kmalloc(sizeof(struct probe) * n, GFP_KERNEL); if (p == NULL)
return -ENOMEM; for (i = ; i < n; i++, p++) {
p->owner = module;
p->get = probe;
p->lock = lock;
p->dev = dev;
p->range = range;
p->data = data;
}
mutex_lock(domain->lock);
for (i = , p -= n; i < n; i++, p++, index++)
{
struct probe **s = &domain->probes[index % ];
while (*s && (*s)->range < range)
s = &(*s)->next;
p->next = *s;
*s = p;
}
mutex_unlock(domain->lock);
return ;
}

当一个字符设备驱动不再需要的时候(比如模块卸载),就可以用 cdev_del() 函数来释放 cdev 占用的内存。

 /**
* cdev_del() - remove a cdev from the system
* @p: the cdev structure to be removed
*
* cdev_del() removes @p from the system, possibly freeing the structure
* itself.
*/
void cdev_del(struct cdev *p)
{
cdev_unmap(p->dev, p->count);
kobject_put(&p->kobj);
}

kobj_unmap() 释放 cdev_map 散列表中的对象。

 //void cdev_del(struct cdev *p)
//cdev_unmap(p->dev, p->count);
static void cdev_unmap(dev_t dev, unsigned count)
{
kobj_unmap(cdev_map, dev, count);
}
void kobj_unmap(struct kobj_map *domain, dev_t dev, unsigned long range)
{
unsigned n = MAJOR(dev + range - ) - MAJOR(dev) + ;
unsigned index = MAJOR(dev);
unsigned i;
struct probe *found = NULL; if (n > )
n = ; mutex_lock(domain->lock);
for (i = ; i < n; i++, index++) {
struct probe **s;
for (s = &domain->probes[index % ]; *s; s = &(*s)->next)
{
struct probe *p = *s;
if (p->dev == dev && p->range == range)
{
*s = p->next;
if (!found)
found = p;
break;
}
}
}
mutex_unlock(domain->lock);
kfree(found);
}

kobj_unmap()

kobject_put() 释放 cdev 结构本身。

 /**
* kobject_put - decrement refcount for object.
* @kobj: object.
*
* Decrement the refcount, and if 0, call kobject_cleanup().
*/
void kobject_put(struct kobject *kobj)
{
if (kobj) {
if (!kobj->state_initialized)
WARN(, KERN_WARNING "kobject: '%s' (%p): is not "
"initialized, yet kobject_put() is being "
"called.\n", kobject_name(kobj), kobj);
kref_put(&kobj->kref, kobject_release);
}
}

kobject_put()

cdev_add的更多相关文章

  1. Linux设备管理(二)_从cdev_add说起

    我在Linux字符设备驱动框架一文中已经简单的介绍了字符设备驱动的基本的编程框架,这里我们来探讨一下Linux内核(以4.8.5内核为例)是怎么管理字符设备的,即当我们获得了设备号,分配了cdev结构 ...

  2. 【整理】--【字符设备】cdev_init()/cdev_alloc(),cdev_add(),cdev_del()

    (1) 内核中每个字符设备都对应一个 cdev结构的变量,下面是它的定义: linux-2.6.22/include/linux/cdev.h struct cdev { struct kobject ...

  3. 转:Linux 内核中的 cdev_alloc和cdev_add

    内核中每个字符设备都对应一个 cdev 结构的变量,下面是它的定义:linux-2.6.22/include/linux/cdev.hstruct cdev {struct kobject kobj; ...

  4. 【Linux-驱动】将cdev加入到系统中去---cdev_add

    在我们已经完成了对cdev结构体的初始化之后,我们需要将这个cdev结构体加入到系统中去,使用函数 cdev_add: /** * cdev_add() 讲一个字符设备加入到系统中去 * @p: 字符 ...

  5. IIC驱动移植在linux3.14.78上的实现和在linux2.6.29上实现对比(deep dive)

    首先说明下为什么写这篇文章,网上有许多博客也是介绍I2C驱动在linux上移植的实现,但是笔者认为他们相当一部分没有分清所写的驱动时的驱动模型,是基于device tree, 还是基于传统的Platf ...

  6. Linux设备管理(五)_写自己的sysfs接口

    我们在Linux设备管理(一)_kobject, kset,ktype分析一文中介绍了kobject的相关知识,在Linux设备管理(二)_从cdev_add说起和Linux设备管理(三)_总线设备的 ...

  7. Linux设备管理(四)_从sysfs回到ktype

    sysfs是一个基于ramfs的文件系统,在2.6内核开始引入,用来导出内核对象(kernel object)的数据.属性到用户空间.与同样用于查看内核数据的proc不同,sysfs只关心具有层次结构 ...

  8. Linux字符设备驱动框架

    字符设备是Linux三大设备之一(另外两种是块设备,网络设备),字符设备就是字节流形式通讯的I/O设备,绝大部分设备都是字符设备,常见的字符设备包括鼠标.键盘.显示器.串口等等,当我们执行ls -l ...

  9. blocking and unblocking mechanism for linux drivern code

    概念: 1> 阻塞操作      是指在执行设备操作时,若不能获得资源,则挂起进程直到满足操作条件后再进行操作.被挂起的进程进入休眠,被从调度器移走,直到条件满足: 2> 非阻塞操作  在 ...

随机推荐

  1. python虚拟环境四

    python虚拟环境管理器 我们在使用python虚拟环境的时候,最好安装一个虚拟环境管理器,这样我们就能很方便的管理python的 虚拟环境,而python的虚拟环境管理工具包就是virtualen ...

  2. Tinghua Data Mining 6

    Networks 多层感知机 不是说这个神经网络要与人的大脑神经完全相似,也不是说要多么的强大,而是在一定程度上模拟了人脑神经元的能力,就足够了 为什么要w0呢,因为没有w0超平面一定会经过原点,所以 ...

  3. bzoj 2441 [中山市选2011]小W的问题

    bzoj 2441 [中山市选2011]小W的问题 Description 有一天,小W找了一个笛卡尔坐标系,并在上面选取了N个整点.他发现通过这些整点能够画出很多个"W"出来.具 ...

  4. Codeforces 1119D(贡献计算)

    题目传送 排序看一看. 关键点在于发现性质: 算一个点的贡献时: 1.与后一个有重叠.\[当 a[i] + r >= a[i + 1] + l, 即 r - l >= a[i + 1] - ...

  5. FFT与NTT的模板

    网上相关博客不少,这里给自己留个带点注释的模板,以后要是忘了作提醒用. 以洛谷3803多项式乘法裸题为例. FFT: #include <cstdio> #include <cmat ...

  6. python之 __getattr__、__getattr__、__getitem__、__setitem__ 使用

    python之 __getattr__.__getattr__.__getitem__.__setitem__ 使用 __getattr__内置使用点号获取实例属性属性如 s.name,自调用__ge ...

  7. siege官方文档(译)(二)

    WHY DO I NEED IT? Siege was written for both web developers and web systems administrators. siege是为了 ...

  8. python入门之实例-商品选择

    需求: 显示一系列商品,根据序号选择商品 li = ["手机","电脑","电视"] #函数enumerate在for循环遍历的时候,会默认 ...

  9. cucumber 背景和场景的区别

    背景是公用的,每个场景都会执行,相当于前提条件: 场景是一个单独的case 别人的cucumber学习总结: 链接:http://ruby-china.org/topics/7119

  10. UIView和Masonry实现动画效果

    Masonry 实现动画效果如下: //button点击方法 - (void)clickedButton { static BOOL isMove; //默认是NO Weakify(weakSelf) ...