lightoj1060【康托逆展开】
可以先看些资料:http://blog.csdn.net/keyboarderqq/article/details/53388936
参考谷巨巨:http://blog.csdn.net/azx736420641/article/details/50982142
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int>PII;
const double eps=1e-5;
const double pi=acos(-1.0);
//const int mod=1e9+7;
const int INF=0x3f3f3f3f; char s[25];
LL f[25];
int a[30]; void init()
{
f[0]=1;
for(int i=1;i<=22;i++)
f[i]=f[i-1]*i;
} int main()
{
init();
int n,T,len,cas=1;
scanf("%d",&T);
while(T--)
{
scanf("%s%d",s,&n);
len=strlen(s);
memset(a,0,sizeof(a));
for(int i=0;i<len;i++)
a[s[i]-'a']++;
//计算总的方案数,采用除序法;
LL temp=f[len];
for(int i=0;i<26;i++)
temp/=f[a[i]];
printf("Case %d: ",cas++);
if(temp<n)
{
puts("Impossible");
continue;
} for(int i=0;i<len;i++)
{
for(int j=0; j<26; j++)
{
if(!a[j])
continue;
a[j]--;
LL tmp=f[len-i-1]; //对于第i个位置为j,计算总排列数
for(int k=0; k<26; k++) //除序法计算方案数
tmp/=f[a[k]];
if(n<=tmp) //如果方案数已超,一定是字母 j ;
{
printf("%c",'a'+j);
break;
}
n-=tmp; //减去,肯定是别的字母
a[j]++;
}
}
puts("");
}
return 0;
}
lightoj1060【康托逆展开】的更多相关文章
- HDU 1027 Ignatius and the Princess II(康托逆展开)
Ignatius and the Princess II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ( ...
- 康托展开&&康托逆展开
康托展开 简介:对于给定的一个排列,求它是第几个,比如54321是n=5时的第120个.(对于不是1~n的排列可以离散化理解) 做法: ans=a[n]*(n-1)!+a[n-1]*(n-2)!+~~ ...
- 康托展开&康托逆展开 的写法
康托展开 康托展开解决的是当前序列在全排序的名次的问题. 例如有五个数字组成的数列:1,2,3,4,5 那么1,2,3,4,5就是全排列的第0个[注意从0开始计数] 1,2,3,5,4就是第1个 1, ...
- 【数学】康托展开 && 康托逆展开
(7.15)康托展开,就是把全排列转化为唯一对应自然数的算法.它可以建立1 - n的全排列与[1, n!]之间的自然数的双向映射. 1.康托展开: 尽管我并不清楚康托展开的原理何在,这个算法的过程还是 ...
- 康托展开&逆展开算法笔记
康托展开(有关全排列) 康托展开:已知一个排列,求这个排列在全排列中是第几个 康托展开逆运算:已知在全排列中排第几,求这个排列 定义: X=an(n-1)!+an-1(n-2)!+...+ai(i-1 ...
- 康托展开+逆展开(Cantor expension)详解+优化
康托展开 引入 康托展开(Cantor expansion)用于将排列转换为字典序的索引(逆展开则相反) 百度百科 维基百科 方法 假设我们要求排列 5 2 4 1 3 的字典序索引 逐位处理: 第一 ...
- Project Euler 24 Lexicographic permutations( 康拓逆展开 )
题意: 排列指的是将一组物体进行有顺序的放置.例如,3124是数字1.2.3.4的一个排列.如果把所有排列按照数字大小或字母先后进行排序,我们称之为字典序排列.0.1.2的字典序排列是:012 021 ...
- 用康托展开实现全排列(STL、itertools)
康拓展开: $X=a_n*(n-1)!+a_{n-1}*(n-2)!+\ldots +a_2*1!+a_1*0!$ X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+ ...
- P3014 [USACO11FEB]牛线Cow Line && 康托展开
康托展开 康托展开为全排列到一个自然数的映射, 空间压缩效率很高. 简单来说, 康托展开就是一个全排列在所有此序列全排列字典序中的第 \(k\) 大, 这个 \(k\) 即是次全排列的康托展开. 康托 ...
随机推荐
- FFmpeg解码详细流程
FFmpeg在解码一个视频的时候的函数调用流程.为了保证结构清晰,其中仅列出了最关键的函数,剔除了其它不是特别重要的函数. 下面解释一下图中关键标记的含义. 函数背景色 函数在图中以方框的形式表现出来 ...
- linux新建文件和文件夹命令
1.touch命令 touch命令用来修改文件的访问时间.修改时间.如果没有指定时间,则将文件时间属性改为当前时间. 当指定文件不存在,touch命令变为创建该文件. 语法: touch [-acm] ...
- iphone开发的技巧
一,改动状态栏: 1.增加[[UIApplication sharedApplication] setStatusBarHidden:YES animated:NO];但此方法仅仅是不显示状态条,状态 ...
- 【上】安全HTTPS-全面具体解释对称加密,非对称加密,数字签名,数字证书和HTTPS
一,对称加密 所谓对称加密.就是它们在编码时使用的密钥e和解码时一样d(e=d),我们就将其统称为密钥k. 对称加解密的步骤例如以下: 发送端和接收端首先要共享同样的密钥k(即通信前两方都须要知道相应 ...
- SAM4E单片机之旅——11、UART之PDC收发
使用PDC进行数据的收发能减少CPU的开销.这次就使用PDC进行UART数据的接收与发送,同时,也利用TC也实现了PDC的接收超时. PDC是针对外设的DMA控制器.对比DMA控制器,它更为简便,与相 ...
- 九度OJ 1133:学分绩点 (加权平均数)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1333 解决:702 题目描述: 北京大学对本科生的成绩施行平均学分绩点制(GPA).既将学生的实际考分根据不同的学科的不同学分按一定的公式 ...
- 在Qt Creator中创建C++工程并使用CMake构建项目
创建完毕后,若电脑上没有安装CMake,则无法构建工程, 我用的是绿色版,官网下载地址:https://cmake.org/files/v3.10/cmake-3.10.1-win64-x64.zip ...
- PO 审批及生成xml文件
*********************************************************************** * Report : YTST_RAINY_MM2 * ...
- CoreData使用
1.如果想创建一个带有coreData的程序,要在项目初始化的时候勾选中 2.创建完成之后,会发现在AppDelegate里多出了几个属性,和2个方法 <span style="fon ...
- poj2773 —— 二分 + 容斥原理 + 唯一分解定理
题目链接:http://poj.org/problem?id=2773 Happy 2006 Time Limit: 3000MS Memory Limit: 65536K Total Submi ...