Codeforces 777E Hanoi Factory(线段树维护DP)
题目链接 Hanoi Factory
很容易想到这是一个DAG模型,那么状态转移方程就出来了。
但是排序的时候有个小细节:b相同时看a的值。
因为按照惯例,堆塔的时候肯定是内半径大的在下面。
因为N有1e5,那么DP的时候用线段树优化一下,就可以了。
#include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for(int i(a); i <= (b); ++i) typedef long long LL; const int N = 200000 + 10; struct Segtree{
int l, r;
LL num;
} segtree[N << 2]; struct node{
int a, b;
LL h;
friend bool operator < (const node &A, const node &B){
return A.b == B.b ? A.a > B.a : A.b > B.b;
}
} c[N]; struct Node{
int x, y;
friend bool operator < (const Node &a, const Node &b){
return a.x < b.x;
}
} f[N]; int aa[N], bb[N];
int n, m, cnt;
map <int, int> mp;
LL ans; inline void pushup(int i){
segtree[i].num = max(segtree[i << 1].num, segtree[i << 1 | 1].num);
} void build(int i, int l, int r){ segtree[i].l = l;
segtree[i].r = r;
segtree[i].num = 0; if (l == r) return ;
int mid = (l + r) >> 1;
build(i << 1, l, mid);
build(i << 1 | 1, mid + 1, r);
} void update(int i, int pos, LL value){
int L = segtree[i].l, R = segtree[i].r;
if (L == R && L == pos){
segtree[i].num = max(segtree[i].num, value);
return;
} int mid = L + R >> 1;
if (pos <= mid) update(i << 1, pos, value);
else update(i << 1 | 1, pos, value); pushup(i);
} LL query(int i, int l, int r){
int L = segtree[i].l, R = segtree[i].r;
if (L == l && R == r) return segtree[i].num;
int mid = L + R >> 1;
LL ret = 0;
if (r <= mid)
ret = max(ret, query(i << 1, l, r));
else
if (l > mid)
ret = max(ret, query(i << 1 | 1, l, r));
else
{
ret = max(ret, query(i << 1, l, mid));
ret = max(ret, query(i << 1 | 1, mid + 1, r));
} return ret;
} int main(){ scanf("%d", &n);
cnt = 0;
rep(i, 1, n){
scanf("%d%d%lld", aa + i, bb + i, &c[i].h);
f[++cnt].x = aa[i];
f[++cnt].x = bb[i];
} sort(f + 1, f + cnt + 1); f[1].y = 1;
rep(i, 2, cnt) f[i].y = f[i].x == f[i - 1].x ? f[i - 1].y : f[i - 1].y + 1;
rep(i, 1, cnt) mp[f[i].x] = f[i].y; rep(i, 1, n){
c[i].a = mp[aa[i]];
c[i].b = mp[bb[i]];
} sort(c + 1, c + n + 1); m = 0;
rep(i, 1, n){
m = max(m, c[i].a);
m = max(m, c[i].b);
} build(1, 1, m); rep(i, 1, n){
LL now = query(1, 1, c[i].b - 1);
LL cnt = now + c[i].h;
ans = max(ans, cnt);
update(1, c[i].a, cnt);
} printf("%lld\n", ans); return 0; }
Codeforces 777E Hanoi Factory(线段树维护DP)的更多相关文章
- Codeforces Round #271 (Div. 2) E题 Pillars(线段树维护DP)
题目地址:http://codeforces.com/contest/474/problem/E 第一次遇到这样的用线段树来维护DP的题目.ASC中也遇到过,当时也非常自然的想到了线段树维护DP,可是 ...
- codeforces Good bye 2016 E 线段树维护dp区间合并
codeforces Good bye 2016 E 线段树维护dp区间合并 题目大意:给你一个字符串,范围为‘0’~'9',定义一个ugly的串,即串中的子串不能有2016,但是一定要有2017,问 ...
- Codeforces Round #343 (Div. 2) D. Babaei and Birthday Cake 线段树维护dp
D. Babaei and Birthday Cake 题目连接: http://www.codeforces.com/contest/629/problem/D Description As you ...
- Codeforces GYM 100114 D. Selection 线段树维护DP
D. Selection Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100114 Descriptio ...
- 【8.26校内测试】【重构树求直径】【BFS模拟】【线段树维护DP】
题目性质比较显然,相同颜色联通块可以合并成一个点,重新建树后,发现相邻两个点的颜色一定是不一样的. 然后发现,对于一条链来说,每次把一个点反色,实际上使点数少了2个.如下图 而如果一条链上面有分支,也 ...
- 2019牛客暑期多校训练营(第二场)E 线段树维护dp转移矩阵
题意 给一个\(n\times m\)的01矩阵,1代表有墙,否则没有,每一步可以从\(b[i][j]\)走到\(b[i+1][j]\),\(b[i][j-1]\),\(b[i][j+1]\),有两种 ...
- Codeforces750E. New Year and Old Subsequence (线段树维护DP)
题意:长为2e5的数字串 每次询问一个区间 求删掉最少几个字符使得区间有2017子序列 没有2016子序列 不合法输出-1 题解:dp i,p(0-4)表示第i个数匹配到2017的p位置删掉的最少数 ...
- CodeForces833 B. The Bakery 线段树维护dp
题目链接:https://vjudge.net/problem/CodeForces-833B 题意:给长度为n的数组a,和一个整数k要求把数组分成连续的k段,每段的权值是该段中不同数的个数,输出最大 ...
- hdu4719 Oh My Holy FFF 线段树维护dp
题意:给你一个长度为n的数组v,你需要把这个数组分成很多段,你需要保证每一段的长度不能超过k我们设一共有m段,每一段右边界那个数为bi那么我们要使得sum(bi*bi-b(i-1))最大 (1< ...
随机推荐
- 拓扑排序+不是字典序的优先级排列(POJ3687+HDU4857)
一.前言 在过去的一周里结束了CCSP的比赛,其中有一道题卡了我9个小时,各种调错都没法完整的调处来这题,于是痛下决心开始补题,这个是计划的一部分.事实上,基于错误的理解我写了若干发拓扑排序+字典序的 ...
- Linux文件类型 扩展名的作用
链接类型文件 查找显示管道文件 普通文件类型 file 查看文件的类型 data文件类型 创建块字和符设备 mknod 1,.tar .tar.gz .tgz .zip tar.bz 表示压缩文件,创 ...
- wcf第三方客户端与wcf服务之间调用入门
Wcf服务与我们的客户端如何建立联系的呢.本文简单记录一下 1.创建我们的wcf服务程序. 第一个wcf服务库是创建我们的wcf库,运行时会单独来托管我们的程序,而非托管在iis下. 第二个wcf服务 ...
- git 使用规范
git使用资料: https://github.com/peak-c/my-git 公司内部使用开发规范: 一. 代码库介绍 个人开发库(git@gitlab.adrd.sohuno.com:sper ...
- MySQL基础6-分组查询
1.分组函数 需求20:查询所有商品平均零售价SELECT AVG(salePrice) FROM product 需求21:查询商品总记录数SELECT COUNT(id) count FROM p ...
- angular用$sce服务来过滤HTML标签
angular js的强大之处之一就是他的数据双向绑定这一牛B功能,我们会常常用到的两个东西就是ng-bind和针对form的ng-model.但在我们的项目当中会遇到这样的情况,后台返回的数据中带有 ...
- cf984e Elevator
ref我好菜啊 #include <iostream> #include <cstring> #include <cstdio> #include <cmat ...
- 设计模式之第1章-工厂方法模式(Java实现)
设计模式之第1章-工厂方法模式(Java实现) “我先来”,“不,老公,我先!”.远远的就听到几个人,哦不,是工厂方法模式和抽象工厂模式俩小夫妻在争吵,尼妹,又不是吃东西,谁先来不都一样(吃货的世界~ ...
- 【Word Break】cpp
题目: Given a string s and a dictionary of words dict, determine if s can be segmented into a space-se ...
- leetcode NO.349 两个数组的交集 (python实现)
来源 https://leetcode-cn.com/problems/intersection-of-two-arrays/ 题目描述 给定两个数组,写一个函数来计算它们的交集. 例子: 给定 nu ...