N皇后问题是一个经典的问题,是回溯算法的典型案例。它是由国际西洋棋棋手马克斯·贝瑟尔于1848年提出的八皇后问题延伸而来的,具体要求如下:在N*N的方格棋盘放置N个皇后,使她们彼此不相互攻击,即任意2个皇后不允许在同一行、同一列、同一45°的斜线上,问有多少种摆法。

Java:

 import java.util.Scanner;  

 /**
* n皇后问题解决
*
*/
public class N_Queens {
/**下标i表示第几行,x[i]表示第i行皇后的位置,注意此处0行不用*/
public int[] x;
/**皇后的数目*/
public int queenNum;
/**解的数目*/
public int methodNum; N_Queens(int queenNum)
{
this.queenNum = queenNum;
this.x = new int[queenNum+1];//注意,这里我们从第1行开始算起,第0行不用
backtrack(1);//从第一个皇后开始递归
} /**
* 一行一行的确定该行的皇后位置
* @param t
*/
public void backtrack(int t)
{
if( t > queenNum) //如果当前行大于皇后数目,表示找到解了
{
methodNum++;//sum为所有的可行的解
//依次打印本次解皇后的位置
for(int m = 1; m <= queenNum; m++)
{
//System.out.println(x[m]);//这一行用输出当递归到叶节点的时候,一个可行解
//这里只是为了好看才写成下面的
for(int k =1; k <= queenNum;k++)
{
if(k == x[m])
{
System.out.print(x[m]+" ");
}
else
{
System.out.print("* ");//用*表示没有被用到的位置
}
}
System.out.println();
}
System.out.println();
}
else
{
for(int i = 1;i <= queenNum;i++)
{
x[t] = i;//第t行上皇后的位置只能是1-queenNum
if(place(t)) //此处的place函数用来进行我们上面所说的条件的判断,如果成立,进入下一级递归,即放置下一个皇后
backtrack(t+1);
}
}
} /**
* 判断第k行皇后可以放置的位置
* @param k k表示第k行,X[K]k表示第k行上皇后的位置
* @return boolean false表示此处不能放置皇后
*/
public boolean place(int k)
{
for (int j = 1; j < k; j++)
// 如果当前传入的第K行上的皇后放置的位置和其它皇后一个对角线(abs(x[k]- x[j])==abs(k-j)或一个直线上(x[j] == x[k])
if (Math.abs(x[k] - x[j]) == Math.abs(k - j) || (x[j] == x[k]))
return false;
return true;
} public static void main(String[] args)
{
System.out.print("请输入皇后数:");
Scanner scan=new Scanner(System.in);
int n=scan.nextInt();
System.out.println("\n棋盘布置方案:");
N_Queens n_queens = new N_Queens(n);
scan.close();
System.out.print("总共解数为:"+ n_queens.methodNum);
}
}

作者:耑新新,发布于  博客园

转载请注明出处,欢迎邮件交流:zhuanxinxin@aliyun.com

N皇后问题的实现的更多相关文章

  1. 递归实现n(经典的8皇后问题)皇后的问题

    问题描述:八皇后问题是一个以国际象棋为背景的问题:如何能够在8×8的国际象棋棋盘上放置八个皇后, 使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行.纵行或斜线上 ...

  2. 八皇后算法的另一种实现(c#版本)

    八皇后: 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于 ...

  3. [LeetCode] N-Queens II N皇后问题之二

    Follow up for N-Queens problem. Now, instead outputting board configurations, return the total numbe ...

  4. [LeetCode] N-Queens N皇后问题

    The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens ...

  5. N皇后问题—初级回溯

    N皇后问题,最基础的回溯问题之一,题意简单N*N的正方形格子上放置N个皇后,任意两个皇后不能出现在同一条直线或者斜线上,求不同N对应的解. 提要:N>13时,数量庞大,初级回溯只能保证在N< ...

  6. 数据结构0103汉诺塔&八皇后

    主要是从汉诺塔及八皇后问题体会递归算法. 汉诺塔: #include <stdio.h> void move(int n, char x,char y, char z){ if(1==n) ...

  7. N皇后问题

    题目描述 在n×n格的棋盘上放置彼此不受攻击的n个皇后.按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子.n后问题等价于再n×n的棋盘上放置n个后,任何2个皇后不妨在同一行或同 ...

  8. LeetCode:N-Queens I II(n皇后问题)

    N-Queens The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no tw ...

  9. 八皇后问题_Qt_界面程序实现

    //核心代码如下 //Queen--放置皇后 #include "queue.h" queue::queue() { *; ; this->board = new bool[ ...

  10. 两个NOI题目的启迪8皇后和算24

    论出于什么原因和目的,学习C++已经有一个星期左右,从开始就在做NOI的题目,到现在也没有正式的看<Primer C++>,不过还是受益良多,毕竟C++是一种”低级的高级语言“,而且NOI ...

随机推荐

  1. 【Asp.net入门2-01】C#基本功能

    C#是一种功能强大的语言,但并不是所有程序员都熟悉我们将在本书中讨论的所有功能.因此, 本章将介绍优秀的Web窗体程序员需要了解的C#语言功能. 本章仅简要介绍每一项功能.有关C#语言本身的知识不是本 ...

  2. NO.3day 网络基础

    网络基础 1.互联网协议 概念:通过互联网传输数据的标准. 功能:定义计算机如何接入internet,以及接入internet的计算机通信的标准. 2.OSI五层模型 应用层--传输层--网络层--数 ...

  3. NATS_08:NATS客户端Go语言手动编写

    NATS客户端    一个NATS客户端是基于NATS服务端来说既可以是一个生产数据的也可以是消费数据的.生产数据的叫生产者英文为 publishers,消费数据的叫消费者英文为 subscriber ...

  4. HTTP返回代码 403 404 500等代表的含义

    在网站日志中,我们经常会看到很多返回的http代码,如201.304.404.500等等.可是这些具体的返回的HTTP代码究竟什么含义呢,在此做一下知识普及吧,记不住不要紧,到时候看看就行了,但最主要 ...

  5. 科学计算三维可视化---Traits介绍

    简介 Traits是开源扩展库,Traits本身与科学计算可视化没有直接关联,但他其实TVTK,Mayavi,TraitsUI基础 安装: pip3 install traits--cp36-cp36 ...

  6. ShareRepository

    文件共享下载链接: 1:关于模拟器的配置附件http://pan.baidu.com/s/1jGFqfh8 原文地址:http://www.cnblogs.com/killerlegend/p/382 ...

  7. 苏宁OLAP架构设计

    一. 功能综述 OLAP引擎为存储和计算二合一的引擎,自身内部涵盖了对数据的管理以及提供查询能力.底层数据完全规划在引擎内部,外部系统不允许直接操作底层数据,而是需要通过暴露出来的接口来读写引擎内部数 ...

  8. VBS 重启 TP-Link 路由器

    分享一个自己用的小工具,重启TP-Link路由器的,好像还是大学时候写的,献丑了. 其他路由器可能有些不同,但是思路都是差不多的. user = "admin" '路由器帐号 pa ...

  9. 悲催的IE6 七宗罪大吐槽(带解决方法)第一部分

    一.奇数宽高 悲剧的IE6啊,为何有如此多bug,但用户市场又那么大,真让我们搞网站的纠结.今天就遇到了一个非常奇怪但又很细节的一个bug,一个外部的相对定位div,内部一个绝对定位的div(righ ...

  10. 编辑器之王:Emacs 和 Vim

    Emacs 是神的编辑器,而 Vim 是编辑器之神.二者为何会有如此美誉,且听本文向你一一道来. Author: Jiqing Wu email: jiqingwu@gmail.com homepag ...