Description

There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is a selection of rows such that every column has a 1 in exactly one of the selected rows. Try to find out the selected rows.

Input

There are multiply test cases. First line: two integers N, M; The following N lines: Every line first comes an integer C(1 <= C <= 100), represents the number of 1s in this row, then comes C integers: the index of the columns whose value is 1 in this row.

Output

First output the number of rows in the selection, then output the index of the selected rows. If there are multiply selections, you should just output any of them. If there are no selection, just output "NO".

Sample Input

6 7
3 1 4 7
2 1 4
3 4 5 7
3 3 5 6
4 2 3 6 7
2 2 7

Sample Output

3 2 4 6

DLX:精确覆盖和反复覆盖。此题是精确覆盖。

学习资料;点击打开链接,看了一下午。加上bin神的模板。算是懂了。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<string>
#include<iostream>
#include<queue>
#include<cmath>
#include<map>
#include<stack>
#include<bitset>
using namespace std;
#define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define CLEAR( a , x ) memset ( a , x , sizeof a )
typedef long long LL;
typedef pair<int,int>pil;
const int maxnnode=100100;
const int maxn=1005 ;
const int mod = 1000000007;
struct DLX{
int n,m,size;
int U[maxnnode],D[maxnnode],L[maxnnode],R[maxnnode],Row[maxnnode],Col[maxnnode];
int H[maxn],S[maxn];
int ansd,ans[maxn];
void init(int a,int b)
{
n=a; m=b;
REPF(i,0,m)
{
S[i]=0;
U[i]=D[i]=i;
L[i]=i-1;
R[i]=i+1;
}
R[m]=0; L[0]=m;
size=m;
REPF(i,1,n)
H[i]=-1;
}
void link(int r,int c)
{
++S[Col[++size]=c];
Row[size]=r;
D[size]=D[c];
U[D[c]]=size;
U[size]=c;
D[c]=size;
if(H[r]<0) H[r]=L[size]=R[size]=size;
else
{
R[size]=R[H[r]];
L[R[H[r]]]=size;
L[size]=H[r];
R[H[r]]=size;
}
}
void remove(int c)
{
L[R[c]]=L[c];R[L[c]]=R[c];
for(int i=D[c];i!=c;i=D[i])
{
for(int j=R[i];j!=i;j=R[j])
{
U[D[j]]=U[j];
D[U[j]]=D[j];
--S[Col[j]];
}
}
}
void resume(int c)
{
for(int i=U[c];i!=c;i=U[i])
{
for(int j=L[i];j!=i;j=L[j])
++S[Col[U[D[j]]=D[U[j]]=j]];
}
L[R[c]]=R[L[c]]=c;
}
bool Dance(int d)
{
if(R[0]==0)
{
ansd=d;
return true;
}
int c=R[0];
for(int i=R[0];i!=0;i=R[i])
{
if(S[i]<S[c])//选择1的数量最少的
c=i;
}
remove(c);
for(int i=D[c];i!=c;i=D[i])
{
ans[d]=Row[i];
for(int j=R[i];j!=i;j=R[j]) remove(Col[j]);
if(Dance(d+1)) return true;
for(int j=L[i];j!=i;j=L[j]) resume(Col[j]);
}
resume(c);
return false;
}
};
DLX L;
int main()
{
int n,m;
int x,y;
while(~scanf("%d%d",&n,&m))
{
L.init(n,m);
REPF(i,1,n)
{
scanf("%d",&x);
while(x--)
{
scanf("%d",&y);
L.link(i,y);
}
}
if(!L.Dance(0)) printf("NO\n");
else
{
printf("%d",L.ansd);
REP(i,L.ansd)
printf(" %d",L.ans[i]);
printf("\n");
}
}
return 0;
}

HUST 1017 Exact cover(DLX精确覆盖)的更多相关文章

  1. (简单) HUST 1017 Exact cover , DLX+精确覆盖。

    Description There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is ...

  2. HUST 1017 - Exact cover (Dancing Links 模板题)

    1017 - Exact cover 时间限制:15秒 内存限制:128兆 自定评测 5584 次提交 2975 次通过 题目描述 There is an N*M matrix with only 0 ...

  3. Dancing Link --- 模板题 HUST 1017 - Exact cover

    1017 - Exact cover Problem's Link:   http://acm.hust.edu.cn/problem/show/1017 Mean: 给定一个由0-1组成的矩阵,是否 ...

  4. HUST 1017 Exact cover (Dancing links)

    1017 - Exact cover 时间限制:15秒 内存限制:128兆 自定评测 6110 次提交 3226 次通过 题目描述 There is an N*M matrix with only 0 ...

  5. [ACM] HUST 1017 Exact cover (Dancing Links,DLX模板题)

    DESCRIPTION There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is ...

  6. [HUST 1017] Exact cover

    Exact cover Time Limit: 15s Memory Limit: 128MB Special Judge Submissions: 6012 Solved: 3185 DESCRIP ...

  7. [DLX] hust 1017 Exact cover

    题意: 给你N个包,要拿到M个东西(编号1~M每一个仅仅能有一个) 然后每一个包里有k个东西,每一个东西都有编号. 思路: 舞蹈连模板题 代码: #include"stdio.h" ...

  8. HUST 1017 Exact cover dance links

    学习:请看 www.cnblogs.com/jh818012/p/3252154.html 模板题,上代码 #include<cstdio> #include<cstring> ...

  9. 搜索(DLX):HOJ 1017 - Exact cover

    1017 - Exact cover Time Limit: 15s Memory Limit: 128MB Special Judge Submissions: 6751 Solved: 3519 ...

随机推荐

  1. 在VS中让一个JS文件智能提示另一个JS文件中的成员2--具体引用

    我们知道,在html中,利用<script language="javascript" type="text/javascript" src=" ...

  2. 洛谷P2279消防局的设立

    传送门啦 一个很摸不清头脑的树形dp 状态: $ dp[i][0] $ :选自己 $ dp[i][1] $ :选了至少一个儿子 $ dp[i][2] $ :选了至少一个孙子 ------------- ...

  3. Python 离线环境

    一.应用场景 比如:对于数据安全要求比较严格的机房,服务器是不允许上网的.那么我现在开发了一套python程序,需要一些模块,怎么运行? 二.离线包制作 有2个解决方案: 1. 使用requireme ...

  4. MySQL学习笔记:coalesce

    函数:coalesce 作用:返回传入的参数中第一个非NULL的值 ); # ); # 如果传入的参数所有都是NULL,则返回NULL,比如: SELECT COALESCE(NULL, NULL, ...

  5. day5模块学习--random模块

    Python中的random模块用于生成随机数 下面具体介绍random模块的功能:   1.random.random() #用于生成一个0到1的浮点数   随机浮点数:0<= n < ...

  6. Winsock—I/O模型之选择模型(一)

    Winsock中提供了一些I/O模型帮助应用程序以异步方式在一个或多个套接字上管理I/O. 这样的I/O模型有六种:阻塞(blocking)模型,选择(select)模型,WSAAsyncSelect ...

  7. 8-16 不无聊序列 non-boring sequences uva1608

    题意: 如果一个序列的任意连续子序列中至少有一个只出现一次的元素  则称这个序列是 不无聊序列  输入一个n个元素的序列a   判断是不是不无聊序列 一开始想当然  以为只要 2位的子序列都满足即可 ...

  8. 8-5 Wine trading in Gergovia Gergovia的酒交易 uva11054

    等价转换思维题 题意: 直线上有n(2<=n<=100000)个等距的村庄  每个村庄要么买酒 要么卖酒  设第i个村庄对酒的需求量为ai  绝对值小于一千  其中ai大于0表示买酒   ...

  9. centos7 安装 supervisor

    一.安装 supervisor yum install python-setuptools easy_install supervisor 如果easy_install不好使就从官方下载: wget ...

  10. 【知了堂学习笔记】java 底层容易忽略的知识点

    1. java中的关键字 提到关键字,最主要的就是不能用关键字作为标识符,值得注意的有以下几点. ①其中goto与const在java中没有定义,但是也是关键字.这个基本用不到,但是应该有个认知. ② ...