4451: [Cerc2015]Frightful Formula

Time Limit: 10 Sec  Memory Limit: 64 MB
Submit: 177  Solved: 57
[Submit][Status][Discuss]

Description

给你一个n*n矩阵的第一行和第一列,其余的数通过如下公式推出: 
F[i,j]=a*f[i,j-1]+b*f[i-1,j]+c 
求f[n][n]%(10^6+3) 

Input

第一行三个数n,a,b,c 
第二行n个数,第i个表示f[i][1] 
第三行n个数,第i个表示f[1][i] 

Output

仅一个数表示f[n][n]%(10^6+3) 

Sample Input

Sample Input1:
3 0 0 0
0 0 2
0 3 0

Sample Input2:
4 3 5 2
7 1 4 3
7 4 4 8

Sample Output

Sample Output1:
0

Sample Output2:
41817
数据范围:
2<=n<=200000
其余的数大于等于0小于等于10^6

 

首先这道题每个变量对答案的贡献需要分开考虑。
第一行第i个数贡献为$a[1][i]\times a^{n-i} \times b^{n-1}\times C^{n-i}_{2n-i-2}$
相当于每个点先转到第二列对应点上,然后类似杨辉三角形向右下拓展,乘上对应的a和b。
列同理。
因为每个点会多产生出来一个c,所以还有一部分是c的贡献。
$$c\times \sum^{n}_{i=2} \sum^{n}_{j=2} a^{n-i}b^{n-j}C^{n-i}_{2n-i-j}=c\times \sum^{2n}_{i=4}(2n-i)!\sum_{j=2}^{n} \frac{a^{n-i+j}}{(n-i+j)!}\times \frac{b^{n-j}}{(n-j)!}$$
上FFT.
为了避免掉精度,把每个数拆成$a*1024+b$的两部分别卷积再合起来。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define pi acos(-1)
#define ll long long
#define N 524289
#define NX 200005
using namespace std;
struct E
{
double x,y;
E (){;}
E (double _x,double _y){x=_x,y=_y;}
E operator + (const E a){return E(a.x+x,a.y+y);};
E operator - (const E a){return E(x-a.x,y-a.y);};
E operator * (const E a){return E(x*a.x-y*a.y,x*a.y+y*a.x);};
}a[N],b[N];
int n,R[N];
void FFT(E *a,int f)
{
for(int i=0;i<n;i++)if(i<R[i])swap(a[i],a[R[i]]);
for(int i=1;i<n;i<<=1)
{
E wn(cos(pi/i),f*sin(pi/i));
for(int j=0;j<n;j+=(i<<1))
{
E w(1,0);
for(int k=0;k<i;k++,w=w*wn)
{
E x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y;a[j+k+i]=x-y;
}
}
}
if(f==-1)for(int i=0;i<n;i++)a[i].x/=n;
return ;
}
const int p = 1000003;
const int M = 1024;
ll pw(ll x,ll y)
{
ll lst=1;
while(y)
{
if(y&1)lst=lst*x%p;
y>>=1;
x=x*x%p;
}
return lst;
}
int l[NX],r[NX],pwa[NX],pwb[NX],jie[2*NX],ni[NX];
ll A0[N],B0[N],A1[N],B1[N],T1[N],T2[N],T3[N],T4[N];
void mul(ll *ans,ll *a1,ll *b1)
{
for(int i=0;i<n;i++)a[i].x=a[i].y=b[i].x=b[i].y=0;
for(int i=0;i<n;i++)a[i].x=a1[i];
for(int i=0;i<n;i++)b[i].x=b1[i];
FFT(a,1);FFT(b,1);
for(int i=0;i<n;i++)a[i]=a[i]*b[i];
FFT(a,-1);
for(int i=0;i<n;i++)ans[i]=((ll)(a[i].x+0.5))%p;
return ;
}
int main()
{
int tn,ta,tb,tc;
scanf("%d%d%d%d",&tn,&ta,&tb,&tc); for(int i=1;i<=tn;i++)scanf("%d",&l[i]);
for(int i=1;i<=tn;i++)scanf("%d",&r[i]); jie[0]=1;ni[0]=ni[1]=1;
for(int i=1;i<=2*tn;i++)jie[i]=1LL*jie[i-1]*i%p;
for(int i=2;i<=tn;i++)ni[i]=(1LL*(-p/i)*ni[p%i]%p+p)%p;
for(int i=1;i<=tn;i++)ni[i]=1LL*ni[i]*ni[i-1]%p; pwa[0]=1;pwb[0]=1;
for(int i=1;i<=tn;i++)pwa[i]=1LL*pwa[i-1]*ta%p;
for(int i=1;i<=tn;i++)pwb[i]=1LL*pwb[i-1]*tb%p; for(int i=1;i<=tn;i++)T1[i]=1LL*pwa[tn-i]*ni[tn-i]%p;
for(int i=1;i<=tn;i++)T2[i]=1LL*pwb[tn-i]*ni[tn-i]%p; ll ans=0; for(int i=2;i<=tn;i++)ans+=1LL*r[i]*pwb[tn-1]%p*pwa[tn-i]%p*jie[2*tn-i-2]%p*ni[tn-2]%p*ni[tn-i]%p;
for(int i=2;i<=tn;i++)ans+=1LL*l[i]*pwa[tn-1]%p*pwb[tn-i]%p*jie[2*tn-i-2]%p*ni[tn-2]%p*ni[tn-i]%p; int l=0;n=1;
while(n<=tn<<1)n<<=1,l++;
for(int i=0;i<n;i++)R[i]=(R[i>>1]>>1)|((i&1)<<(l-1)); for(int i=2;i<=tn;i++)
{
A0[i]=T1[i]%M;A1[i]=T1[i]/M;
B0[i]=T2[i]%M;B1[i]=T2[i]/M;
}
memset(T1,0,sizeof(T1));memset(T2,0,sizeof(T2));
mul(T1,A0,B0);mul(T2,A1,B0);mul(T3,A0,B1);mul(T4,A1,B1); for(int i=0;i<n;i++)
{
T2[i]+=T3[i];
(T1[i]+=T2[i]*M%p+T4[i]*M%p*M%p)%=p;
} ll tmp=0;
for(int i=4;i<=2*tn;i++)
{
tmp+=1LL*jie[2*tn-i]*T1[i]%p;
tmp%=p;
}tmp=tmp*tc%p; ans=(ans+tmp)%p;
printf("%lld\n",ans);
return 0;
}

  

 
 
 
 
 
 

bzoj 4451 : [Cerc2015]Frightful Formula FFT的更多相关文章

  1. LG4351 [CERC2015]Frightful Formula

    Frightful Formula 给你一个\(n\times n\)矩阵的第一行和第一列,其余的数通过如下公式推出: \[f_{i,j}=a\cdot f_{i,j-1}+b\cdot f_{i-1 ...

  2. BZOJ4451 [Cerc2015]Frightful Formula 多项式 FFT 递推 组合数学

    原文链接http://www.cnblogs.com/zhouzhendong/p/8820963.html 题目传送门 - BZOJ4451 题意 给你一个$n\times n$矩阵的第一行和第一列 ...

  3. BZOJ4451 : [Cerc2015]Frightful Formula

    $(i,1)$对答案的贡献为$l_iC(2n-i-2,n-i)a^{n-1}b^{n-i}$. $(1,i)$对答案的贡献为$t_iC(2n-i-2,n-i)*a^{n-i}b^{n-1}$. $(i ...

  4. Frightful Formula Gym - 101480F (待定系数法)

    Problem F: Frightful Formula \[ Time Limit: 10 s \quad Memory Limit: 512 MiB \] 题意 题意就是存在一个\(n*n\)的矩 ...

  5. [BZOJ 3456]城市规划(cdq分治+FFT)

    [BZOJ 3456]城市规划(cdq分治+FFT) 题面 求有标号n个点无向连通图数目. 分析 设\(f(i)\)表示\(i\)个点组成的无向连通图数量,\(g(i)\)表示\(i\)个点的图的数量 ...

  6. 【BZOJ】【2179】FFT快速傅里叶

    FFT 做的第二道用到FFT的……好吧其实还是模板题-_-b 百度上说好像分治也能做……不过像FFT这种敲模板的还是省事=.= /*********************************** ...

  7. [BZOJ 4436][Cerc2015]Kernel Knights

    [Cerc2015]Kernel Knights Time Limit: 2 Sec Memory Limit: 512 MBSubmit: 5 Solved: 4[Submit][Status][D ...

  8. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  9. BZOJ 4259: 残缺的字符串 [FFT]

    4259: 残缺的字符串 题意:s,t,星号任意字符,匹配方案数 和上题一样 多乘上一个\(a_{j+i}\)就行了 #include <iostream> #include <cs ...

随机推荐

  1. pwd命令详解

    基础命令学习目录首页 原文链接:https://blog.csdn.net/gnail_oug/article/details/70664458 pwd是Print Working Directory ...

  2. eject命令详解

    基础命令学习目录首页 原文链接:http://www.kgc.cn/bbs/post/128680.shtml Linux eject命令用于退出抽取式设备. 若设备已挂入,则eject会先将该设备卸 ...

  3. React 之容器组件和展示组件相分离解密

    Redux 的 React 绑定库包含了 容器组件和展示组件相分离 的开发思想.明智的做法是只在最顶层组件(如路由操作)里使用 Redux.其余内部组件仅仅是展示性的,所有数据都通过 props 传入 ...

  4. 硬件设计原理图Checklist 参考案例二 【转载】

    类别 描述 检视规则 原理图需要进行检视,提交集体检视是需要完成自检,确保没有低级问题. 检视规则 原理图要和公司团队和可以邀请的专家一起进行检视. 检视规则 第一次原理图发出进行集体检视后所有的修改 ...

  5. (第二周)scrum站立会议

    敏捷流程scrum中的很重要的一个制度之一每日站立会议 了解的内容: 问题:为啥不用email汇报代替每日会议? E-mail不能取代每日会议,E-mail只会增加沟通成本,而且不能提供细节信息或者给 ...

  6. java 面试 -- 4

    Java面试知识点总结   本篇文章会对面试中常遇到的Java技术点进行全面深入的总结,帮助我们在面试中更加得心应手,不参加面试的同学也能够借此机会梳理一下自己的知识体系,进行查漏补缺(阅读本文需要有 ...

  7. POJ 2411 Mondriaan's Dream 插头dp

    题目链接: http://poj.org/problem?id=2411 Mondriaan's Dream Time Limit: 3000MSMemory Limit: 65536K 问题描述 S ...

  8. json反序列化对象

    这个是同事研究的wcf中中根据type类型反序列化json的示例 /// <summary> /// json转对象 /// </summary> /// <param ...

  9. spring时间管理

    spring时间管理相比Quartz要简单的多,但功能不如quartz强大 spring.xml的配置 <?xml version="1.0" encoding=" ...

  10. 用户数以及psp

    小组名称:好好学习 小组成员:林莉  王东涵   胡丽娜   宫丽君 项目名称: 记账本 alpha发布48小时以后用户数如何,是否达到预期目标,为什么,是否需要改进,如何改进(或理性估算). 首先我 ...