Description

有 \(k\) 个长度为 \(n\) 的只含 \(a\) 或 \(b\) 字符串,并不知道它们具体是多少,只知道它们的字典序不小于字符串 \(A\),同时不大于字符串 \(B\)。定义一个字符串是合法的当且仅当它是这 \(k\) 个字符串之一的前缀(如果它是多个串的前缀那么只计算一次)。求合法的字符串最大可能是多少

Input

第一行是两个整数 \(n\) 和 \(k\)

下面两行,第一行是长度为 \(n\) 的字符串 \(A\),第二行是长度为 \(n\) 的字符串 \(B\)

Output

输出一个数代表答案。

Hint

\(1~\leq~n~\leq~5~\times~10^5~,~1~\leq~k~\leq~10^9\)

Solution

我们考虑假如对这 \(k\) 个字符串建出一棵踹Trie树,那么显然一个节点对应一个合法的字符串,答案即为树上节点个数。于是我们的问题即被转化为了最大化Trie树上的节点个数。考虑在一个节点,在合法的条件下孩子数为 \(2\) 的答案显然不劣于孩子数为 \(1\) 的答案。于是我们依照此按照层数进行贪心,尽可能的多分节点即可。考虑因为最后一层的节点最多有 \(k\) 个,所以当算到一层的节点数不小于 \(k\) 时,后面就无需枚举,直接分配给每层 \(k\) 个节点计算答案即可。

Code

#include <cstdio>
#include <algorithm>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif
#define rg register
#define ci const int
#define cl const long long typedef long long int ll; namespace IPT {
const int L = 1000000;
char buf[L], *front=buf, *end=buf;
char GetChar() {
if (front == end) {
end = buf + fread(front = buf, 1, L, stdin);
if (front == end) return -1;
}
return *(front++);
}
} template <typename T>
inline void qr(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
if (lst == '-') x = -x;
} template <typename T>
inline void ReadDb(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
if (ch == '.') {
ch = IPT::GetChar();
double base = 1;
while ((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
}
if (lst == '-') x = -x;
} namespace OPT {
char buf[120];
} template <typename T>
inline void qw(T x, const char aft, const bool pt) {
if (x < 0) {x = -x, putchar('-');}
rg int top=0;
do {OPT::buf[++top] = x % 10 + '0';} while (x /= 10);
while (top) putchar(OPT::buf[top--]);
if (pt) putchar(aft);
} const int maxn = 500010; ll n, k, ans;
char MU[maxn], CU[maxn]; int main() {
freopen("1.in", "r", stdin);
qr(n); qr(k);
do MU[1] = IPT::GetChar(); while ((MU[1] > 'z') || (MU[1] < 'a'));
for (rg int i = 2; i <= n; ++i) MU[i] = IPT::GetChar();
do CU[1] = IPT::GetChar(); while ((CU[1] > 'z') || (CU[1] < 'a'));
for (rg int i = 2; i <= n; ++i) CU[i] = IPT::GetChar();
ll pre = 1;
for (rg int i = 1; i <= n; ++i) {
pre <<= 1;
if (MU[i] == 'b') --pre;
if (CU[i] == 'a') --pre;
if (pre >= k) {
ans += 1ll * k * (n - i + 1);
break;
}
ans += pre;
}
qw(ans, '\n', true);
return 0;
}

【贪心/Trie】【CF1083B】 The Fair Nut and Strings的更多相关文章

  1. [CF1083B]The Fair Nut and Strings

    题目大意:在给定的长度为$n(n\leqslant5\times10^5)$的字符串$A$和字符串$B$中找到最多$k$个字符串,使得这$k$个字符串不同的前缀字符串的数量最多(只包含字符$a$和$b ...

  2. CF 1083 B. The Fair Nut and Strings

    B. The Fair Nut and Strings 题目链接 题意: 在给定的字符串a和字符串b中找到最多k个字符串,使得不同的前缀字符串的数量最多. 分析:  建出trie树,给定的两个字符串就 ...

  3. Codeforces Round #526 (Div. 2) E. The Fair Nut and Strings

    E. The Fair Nut and Strings 题目链接:https://codeforces.com/contest/1084/problem/E 题意: 输入n,k,k代表一共有长度为n的 ...

  4. CF1083B The Fair Nut and String

    题意 给出两个长度为n的01字符串S和T. 选出k个字典序在S和T之间的长度为n的01字符串,使得尽可能多的字符串满足其是所选字符串中至少一个串的前缀. 这是一道思路比较奇怪的类似计数dp的题. 首先 ...

  5. Codeforces 1083B The Fair Nut and Strings

    Description 给定两个由 \('a'\), \('b'\) 组成的字符串 \(a\), \(b\),以及两个整数 \(n\) 和 \(k\) \(n\) 表示字符串 \(a\),\(b\) ...

  6. CF1083E The Fair Nut and Rectangles

    CF1083E The Fair Nut and Rectangles 给定 \(n\) 个平面直角坐标系中左下角为坐标原点,右上角为 \((x_i,\ y_i)\) 的互不包含的矩形,每一个矩形拥有 ...

  7. CF 1083 A. The Fair Nut and the Best Path

    A. The Fair Nut and the Best Path https://codeforces.com/contest/1083/problem/A 题意: 在一棵树内找一条路径,使得从起点 ...

  8. CF1083A The Fair Nut and the Best Path

    CF1083A The Fair Nut and the Best Path 先把边权搞成点权(其实也可以不用),那么就是询问树上路径的最大权值. 任意时刻权值非负的限制可以不用管,因为若走路径 \( ...

  9. Codeforces Round #526 (Div. 2) D. The Fair Nut and the Best Path

    D. The Fair Nut and the Best Path 题目链接:https://codeforces.com/contest/1084/problem/D 题意: 给出一棵树,走不重复的 ...

随机推荐

  1. 从零开始的Python学习 知识补充sorted

    sorted()方法 sorted()可用于任何一个可迭代对象. 原型为sorted(iterable, cmp=None, key=None, reverse=False) iterable:一个可 ...

  2. cd命令详解

    基础命令学习目录首页 cd 进入用户主目录: cd ~ 进入用户主目录: cd - 返回进入此目录之前所在的目录: cd .. 返回上级目录(若当前目录为“/“,则执行完后还在“/":&qu ...

  3. cnblogs用户体验评价

    1. 是否提供良好的体验给用户(同时提供价值)? 博客园就相当于现在生活中处处可见的微博,所有人都在上面发表自己的一些看法,当然我们比较关注的是计算机编程方面的一些博客,大多数编程人员愿意分享自己的代 ...

  4. Linux 环境下Web环境搭建————ActiveMQ

    1.下载安装包http://activemq.apache.org/activemq-5143-release.html 2.解压至指定目录 bin目录下为执行脚本 (脚本无法执行需要修改权限(chm ...

  5. Task 5.1 电梯调度程序需求调研报告

    1.任务概述: 1.1任务背景:试想一下,石家庄铁道大学基础教学楼的电梯配置如下:大厦有18层, 4部电梯,很多乘客使用这些电梯的日常(旅客重量:平均70公斤最大120公斤,最小45公斤).其他常量数 ...

  6. PMS—团队展示

    点我查看作业原题 [队名] PMS(一群pm) [拟做的团队项目描述] 基于监控场景的视频摘要与人车检测跟踪系统 A system, under monitor scene, for video su ...

  7. Java中的常见异常

    非检查异常:Error 和 RuntimeException 以及他们的子类.0错误ArithmeticException,错误的强制类型转换错误ClassCastException,数组索引越界Ar ...

  8. T4模板_入门

    T4模板作为VS自带的一套代码生成器,功能有多强大我也不知道,最近查找了一些资料学习一下,做个笔记 更详细的资料参见: MSDN: http://msdn.microsoft.com/zh-cn/li ...

  9. Maven解读:项目依赖管理如何优化

    Github地址:https://github.com/zwjlpeng/Maven_Detail Maven最大的好处莫过于其强大的依赖管理系统,在Pom配置文件中指定项目需要的Jar包的坐标,Ma ...

  10. Activity设置背景透明之开发坑

    Activity设置背景透明的常规方法 方法一.在Manifest.xml中,直接在需要设置的Activity中添加主题样式: Android:theme="@android:style/T ...