The Triangle Division of the Convex Polygon

题意:求 n 凸多边形可以有多少种方法分解成不相交的三角形,最后值模 m。

思路:卡特兰数的例子,只是模 m 让人头疼,因为 m 不一定是素数,所以不一定存在逆元。

    解法:式子为f(n) =  ( C( 2*(n-2),  (n-2) ) / (n-1))   % m ;令 p = n-2, 式子可化为:f(p) = ((2*p)! / ( p! * (p+1)! ) ) % m;

      对 s!分解质因素,统计个数。设小于等于 s 的素数为 p1, p2, p3, ... , pk;

      则各个素因子个数为 :

  for i =  to k
   q = s
   num(i) =
   while q >
   q = q / pi
   num(i) += q
  end while
  end for

      所以,我们就可以统计出 f(p) 的素因子及个数,分子 + , 分母 - 。最后计算时用快速幂。

代码:

#include <climits>
#include <cstdio>
#include <cstring>
#include <cctype>
#include <cmath>
#include <ctime>
#include <cstdlib>
#include <cstdarg>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <sstream>
#include <exception>
#include <stdexcept>
#include <memory>
#include <locale>
#include <bitset>
#include <deque>
#include <list>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <algorithm>
#include <iterator>
#include <functional>
#include <string>
#include <complex>
#include <valarray> using namespace std; typedef long long ll; const int N = 1e6+; bool tag[N];
int p[N>>];
int t; void prime() {
t = ;
memset(tag, , sizeof tag);
p[t++] = , tag[] = ;
for(int i = ; i < N; i += ) {
if(!tag[i]) p[t++] = i;
for(int j = , k; j < t && (k = i * p[j]) < N; ++j) {
tag[k] = ;
if(i % p[j] == ) break;
}
}
return ;
} int n;
ll m, ans; int zp[N>>], mp[N>>];
int tz, tp; int Factor(int q[], int u) { //分解 n!
int i;
for( i = ; i < t && p[i] <= u; ++i) {
int v = u;
while(v) {
v /= p[i];
q[i] += v;
}
}
return i;
} void cat(int n) {
int nn = n + n;
tz = tp = ;
memset(zp, , sizeof zp);
memset(mp, , sizeof mp); tz = Factor(zp, nn);
tp = Factor(mp, n);
tp = Factor(mp, n+); for(int i = ; i < tp; ++i) zp[i] -= mp[i]; return ;
} ll mult_mod(int a, int b, ll m) {
ll res = 1LL, tt = (ll) a;
while(b) {
if(b&) res = (res * tt) % m;
tt = tt * tt % m;
b >>= ;
}
return res;
} void solve() {
n -= ;
cat(n);
ans = 1LL;
for(int i = ; i < tz; ++i) {
ans = (ans * mult_mod(p[i], zp[i], m)) % m;
}
printf("%I64d\n", ans);
} int main()
{
#ifdef PIT
freopen("c.in", "r", stdin);
#endif // PIT
prime();
while (~scanf("%d %I64d", &n, &m)) {
solve();
} return ;
}

HOJ 13101 The Triangle Division of the Convex Polygon(数论求卡特兰数(模不为素数))的更多相关文章

  1. HNU 13101 The Triangle Division of the Convex Polygon 组合数的因式分解求法

    题意: 求第n-2个Catalan数 模上 m. 思路: Catalan数公式: Catalan[n] = C(n, 2n)/(n+1) = (2n)!/[(n+1)!n!] 因为m是在输入中给的,所 ...

  2. HUNAN 11562 The Triangle Division of the Convex Polygon(大卡特兰数)

    http://acm.hunnu.edu.cn/online/?action=problem&type=show&id=11562&courseid=0 求n边形分解成三角形的 ...

  3. [LeetCode] Convex Polygon 凸多边形

    Given a list of points that form a polygon when joined sequentially, find if this polygon is convex ...

  4. Leetcode: Convex Polygon

    Given a list of points that form a polygon when joined sequentially, find if this polygon is convex ...

  5. ACM训练联盟周赛 G. Teemo's convex polygon

    65536K   Teemo is very interested in convex polygon. There is a convex n-sides polygon, and Teemo co ...

  6. 【LeetCode】469. Convex Polygon 解题报告(C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 计算向量夹角 日期 题目地址:https://leet ...

  7. UVa 11437:Triangle Fun(计算几何综合应用,求直线交点,向量运算,求三角形面积)

    Problem ATriangle Fun Input: Standard Input Output: Standard Output In the picture below you can see ...

  8. HDU 4195 Regular Convex Polygon

    思路:三角形的圆心角可以整除(2*pi)/n #include<cstdio> #include<cstring> #include<iostream> #incl ...

  9. POJ 3410 Split convex polygon(凸包)

    题意是逆时针方向给你两个多边形,问你这两个多边形通过旋转和平移能否拼成一个凸包. 首先可以想到的便是枚举边,肯定是有一对长度相同的边贴合,那么我们就可以n2枚举所有边对,接下来就是旋转点对,那么假设多 ...

随机推荐

  1. 【quickhybrid】Android端的项目实现

    前言 前文中就有提到,Hybrid模式的核心就是在原生,而本文就以此项目的Android部分为例介绍Android部分的实现. 提示,由于各种各样的原因,本项目中的Android容器确保核心交互以及部 ...

  2. 第38次Scrum会议(12/4)【欢迎来怼】

    一.小组信息 队名:欢迎来怼 小组成员 队长:田继平 成员:李圆圆,葛美义,王伟东,姜珊,邵朔,阚博文 小组照片 二.开会信息 时间:2017/12/4 17:50~18:20,总计30min. 地点 ...

  3. IDEA下载插件超时的原因

    setting中红框的对勾去掉就可以下载插件了

  4. Daily Scrum (2015/10/30)

    据组员们反映其他组都会有休息时间,所以我和PM讨论把每周5晚上作为日常休息时间,这一天组员们自由阅读.

  5. Scrum Meeting 报告

    Scrum Meeting 报告 ----团队项目所需时间估计以及任务分配 由于能力有限,我们还不能构架好一个大框架.但是初步可以完成任务的流程和分配.任务所需要的具体实现可以参看<学霸系统的N ...

  6. linux安全配置学习

    参考摘自https://www.cnblogs.com/hiccup/p/4300963.html 1.关闭icmp请求 #vm虚拟机是130地址,通过echo 1 > /proc/sys/ne ...

  7. 每日站立会议——敏捷流程scrum实践

    每日站立会议是敏捷流程scrum中的很重要的一个制度之一. 功能:     1.快速同步进展,让项目组内部的员工互相了解彼此的进展,从而了解本项目的整体进展.      2.给每个人一种精神压力,信守 ...

  8. Cannot open the disk 'D:\win7-ie8\Windows 7 x64.vmdk' or one of the snapshot

    使用机子过程中断电,开机后使用虚拟机提示[Cannot open the disk 'D:\win7-ie8\Windows 7 x64.vmdk' or one of the snapshot],找 ...

  9. macOS how to install python3

    macOS how to install python3 macOS & Python 3.7.2 https://www.python.org/downloads/mac-osx/ http ...

  10. BZOJ 2143 飞飞侠(分层最短路)

    飞飞国是一个N×M的矩形方阵,每个格子代表一个街区.然而飞飞国是没有交通工具的.飞飞侠完全靠地面的弹射装置来移动.每个街区都装有弹射装置.使用弹射装置是需要支付一定费用的.而且每个弹射装置都有自己的弹 ...