• 题解:

    • 令$F$为欢乐度$f(x) = Ox^2 + Sx + U$的生成函数,常数项为$0$;
    • 令$G(x) = \sum_{i=0}^{A} F^i (x) $
    • $ans = [x^M]G;$
    • 模数比较麻烦所以我用的分治求:
    • 如果现在要求$0$到$n-1$的$G_{n} = \sum_{i=0}^{n-1}F^{i}$和$F_{n} = F^{n} $,假设n为偶数;
    • 那么分治求出关于$n/2$的答案$G_{\frac{n}{2}}$和$F_{\frac{n}{2}}$
    • $$G_{n} = (F_{\frac{n}{2}}+1)G_{\frac{n}{2}}  , F_{n} = F_{\frac{n}{2}}^2$$
    • 如果$n$是奇数先算用上述操作算$n-1$,再把$F_{n-1}$补加给$G_{n-1}$得到$G_{n}$,最后$F_{n-1}$另外乘一次得到$F_{n}$;
    • 和快速幂的思想差不多;
    •  #include<bits/stdc++.h>
      #define ld double
      using namespace std;
      const int N=;
      const ld pi=acos(-);
      int M,P,A,O,S,U,len,L,rev[N];
      struct C{
      ld x,y;
      C(ld _x=,ld _y=):x(_x),y(_y){};
      C operator +(const C&A)const{return C(x+A.x,y+A.y);}
      C operator -(const C&A)const{return C(x-A.x,y-A.y);}
      C operator *(const C&A)const{return C(x*A.x-y*A.y,x*A.y+y*A.x);}
      C operator /(const ld&A)const{return C(x/A,y/A);}
      }f[N],g[N],t[N];
      int cal(int x){return (O*x*x+S*x+U)%P;}
      void fft(C*a,int f){
      for(int i=;i<len;++i)if(i<rev[i])swap(a[i],a[rev[i]]);
      for(int i=;i<len;i<<=){
      C wn=C(cos(pi/i),f*sin(pi/i));
      for(int j=;j<len;j+=i<<){
      C w=C(,);
      for(int k=;k<i;++k,w=w*wn){
      C x=a[j+k],y=w*a[j+k+i];
      a[j+k]=x+y,a[j+k+i]=x-y;
      }
      }
      }
      if(!~f)for(int i=;i<len;++i){
      a[i]=a[i]/len;
      a[i].x=int(a[i].x+0.1)%P;
      a[i].y=;
      }
      }
      void solve(int A){
      if(A==){g[].x=;return;}
      solve(A>>);
      fft(f,);fft(g,);
      for(int j=;j<len;++j)g[j]=g[j]*(f[j]+C(,)),f[j]=f[j]*f[j];
      fft(f,-);fft(g,-);
      for(int j=M+;j<len;++j)f[j].x=g[j].x=;
      if(A&){
      for(int j=;j<=M;++j)g[j].x=(int)(g[j].x+f[j].x+0.1)%P;
      fft(f,);for(int j=;j<len;++j)f[j]=f[j]*t[j];
      fft(f,-);for(int j=M+;j<len;++j)f[j].x=;
      }
      }
      int main(){
      // freopen("P5075.in","r",stdin);
      // freopen("P5075.out","w",stdout);
      scanf("%d%d%d%d%d%d",&M,&P,&A,&O,&S,&U);
      for(int i=;i<=M;++i)t[i].x=f[i].x=cal(i%P);
      for(len=;len<=M<<;len<<=,L++);
      for(int i=;i<len;++i)rev[i]=(rev[i>>]>>)|((i&)<<(L-));
      fft(t,);solve(min(A,M)+);
      printf("%d\n",(int)(g[M].x+0.1)%P);
      return ;
      }

LGP5075【JSOI2012】分零食的更多相关文章

  1. 【BZOJ 4332】 4332: JSOI2012 分零食 (FFT+快速幂)

    4332: JSOI2012 分零食 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 119  Solved: 66 Description 这里是欢乐 ...

  2. [BZOJ 4332] [JSOI2012]分零食(DP+FFT)

    [BZOJ 4332] [JSOI2012]分零食(DP+FFT) 题面 同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U.如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是\ ...

  3. bzoj4332;vijos1955:JSOI2012 分零食

    描述 这里是欢乐的进香河,这里是欢乐的幼儿园. 今天是2月14日,星期二.在这个特殊的日子里,老师带着同学们欢乐地跳着,笑着.校长从幼儿园旁边的小吃店买了大量的零食决定分给同学们.听到这个消息,所有同 ...

  4. bzoj 4332:JSOI2012 分零食

    描述 这里是欢乐的进香河,这里是欢乐的幼儿园. 今天是2月14日,星期二.在这个特殊的日子里,老师带着同学们欢乐地跳着,笑着.校长从幼儿园旁边的小吃店买了大量的零食决定分给同学们.听到这个消息,所有同 ...

  5. bzoj 4332: JSOI2012 分零食 快速傅立叶变换

    题目: Description 同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U.如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是\(f(x)=O*x^2+S*x+U\) 现 ...

  6. bzoj千题计划309:bzoj4332: JSOI2012 分零食(分治+FFT)

    https://www.lydsy.com/JudgeOnline/problem.php?id=4332 因为如果一位小朋友得不到糖果,那么在她身后的小朋友们也都得不到糖果. 所以设g[i][j] ...

  7. BZOJ4332 JSOI2012 分零食 【倍增 + NTT】

    题目链接 权限题BZOJ4332 题解 容易想到\(dp\) 设\(g[i][j]\)表示前\(i\)人分到\(j\)颗糖的所有方案的乘积之和 设\(f(x) = Ox^2 + Sx + U\) \[ ...

  8. bzoj4332[JSOI2012]分零食

    一下午被这题的精度续掉了...首先可以找出一个多项式的等比数列的形式,然后类似poj的Matrix Series,不断倍增就可以了.用复数点值表示进行多次的多项式运算会刷刷地炸精度...应当用int存 ...

  9. [洛谷P5075][JSOI2012]分零食

    题目大意:有$m(m\leqslant10^8)$个人站成一排,有$n(n\leqslant10^4)$个糖果,若第$i$个人没有糖果,那么第$i+1$个人也没有糖果.一个人有$x$个糖果会获得快乐值 ...

  10. BZOJ 4332: JSOI2012 分零食 FFT+分治

    好题好题~ #include <bits/stdc++.h> #define N 50020 #define ll long long #define setIO(s) freopen(s ...

随机推荐

  1. Flink 部署文档

    Flink 部署文档 1 先决条件 2 下载 Flink 二进制文件 3 配置 Flink 3.1 flink-conf.yaml 3.2 slaves 4 将配置好的 Flink 分发到其他节点 5 ...

  2. 从Web抓取信息的几个常用方法

    1.Response 对象有一个 status_code 属性,可以检查它是否等于requests.codes.ok. 2.raise_for_status()方法是一种很好的方式,确保程序在下载失败 ...

  3. Xavier——Understanding the difficulty of training deep feedforward neural networks

    1. 摘要 本文尝试解释为什么在深度的神经网络中随机初始化会让梯度下降表现很差,并且在此基础上来帮助设计更好的算法. 作者发现 sigmoid 函数不适合深度网络,在这种情况下,随机初始化参数会让较深 ...

  4. RN 离线包集成后需要注意的一些问题

    1.ReactNative 开发中如何去掉iOS状态栏的"Loading from..." 等淡黑色的弹框,很难看? 在 AppDelegate.h 中引入: #import &l ...

  5. 元素transform: rotate()之后,元素宽高该怎么计算?

    通常,利用transform: rotate()元素之后,我们并不会去在意元素大小的变化,因为看上去并没有什么变化.虽然看上去没有变化,其实是有变化的.下面用一个例子来说明一下. html: < ...

  6. js备忘录2

    JavaScript 的类型分为两类,分别是原始类型和对象类型 其中原始类型中只有数字.字符串和布尔型,和java中的有些不一样 null和undefined不是基本数据类型中的某一种 对象是prop ...

  7. 《JavaScript》split和join

    首先了解split和join两个函数 split 根据条件截断字符串,返回数组 //str.split(option,length) 字符串转数组 //option:表示分割依据 //length:用 ...

  8. Head First Java & final

  9. struts2的运行原理以及底层的工作机制

    1 请求,请求路径是/login(发起请求,被filter拦截) 2 DispatcherFilter 3 获取当前请求的路径 通过request对象 request.getServletPath 4 ...

  10. C1WPF制作OLAP Cube浏览工具

    经过前期一段时间对WPF的学习了解,相信大家对WPF有了一定的了解.今天我们一起来了解使用Component One(简称C1)的WPF控件制作CUBE浏览工具.其实这个OLAP控件官方已经有了很详细 ...