BZOJ 1391 [Ceoi2008]order
1391: [Ceoi2008]order
Description
Input
Output
Sample Input
100 2
1 30
2 20
100 2
1 40
3 80
50
80
110
Sample Output
HINT
此题颇为有趣。一看便能知道是最大权闭合子图。但怎么区分租赁与购买呢?做了此题,再与BZOJ 1497 [NOI2006]最大获利比较,一下子我就明白了。
此题中,n个工作的获益先加在一起。源点S与n个工作连一条流量为获利的边,m台机器与汇点T连一条流量为购买费用的边,工作与机器之间连上相应的租赁费用。这样,跑一遍最大流(最小割),然后sum-maxflow即可。
为什么是对的?因为租赁可以理解为暂时的专属的,而购买就是永恒的普遍的。这在建图中体现的很明显。
而NOI那道题中,只不过没有租赁,所以工作与机器之间是inf。
很有意思啊!
/**************************************************************
Problem: 1391
User: Doggu
Language: C++
Result: Accepted
Time:4252 ms
Memory:47844 kb
****************************************************************/ #include <cstdio>
#include <cstring>
#include <algorithm>
template<class T>inline void readin(T &res) {
static char ch;T flag=;
while((ch=getchar())<''||ch>'')if(ch=='-')flag=-;
res=ch-;while((ch=getchar())>=''&&ch<='')res=(res<<)+(res<<)+ch-;res*=flag;
} const int N = ;
const int M = ;
struct Edge {int v,upre,cap,flow;}g[M];
int head[N], ne=-;
inline void adde(int u,int v,int cap) {
g[++ne]=(Edge){v,head[u],cap,};head[u]=ne;
g[++ne]=(Edge){u,head[v],,};head[v]=ne;
} #include <queue>
std::queue<int> q;
int n, m, s, t, sum, d[N], cur[N];
bool BFS() {
while(!q.empty()) q.pop();
memset(d,,sizeof(d));
q.push(s);d[s]=;
while(!q.empty()) {
int u=q.front();q.pop();
for( int i = head[u]; i != -; i = g[i].upre ) {
int v=g[i].v;
if(!d[v]&&g[i].cap>g[i].flow) q.push(v), d[v]=d[u]+;
}
}
return d[t];
}
int DFS(int u,int a) {
if(u==t||a==) return a;
int flow=, f;
for( int &i = cur[u]; i != -; i = g[i].upre ) {
int v=g[i].v;
if(d[v]==d[u]+&&(f=DFS(v,std::min(a,g[i].cap-g[i].flow)))>) {
flow+=f;a-=f;
g[i].flow+=f;g[i^].flow-=f;
if(a==) break;
}
}
if(flow==) d[u]=;
return flow;
}
void maxflow() {
int flow=;
while(BFS()) {
memcpy(cur,head,sizeof(head));
flow+=DFS(s,0x3f3f3f3f);
}
printf("%d\n",sum-flow);
} int main() {
memset(head,-,sizeof(head));
readin(n);readin(m);s=;t=n+m+;
for( int i = , w, a, b, c; i <= n; i++ ) {
readin(w);readin(b);
adde(s,i,w);sum+=w;
for( int j = ; j <= b; j++ ) {
readin(a);readin(c);
adde(i,n+a,c);
}
}
for( int i = ,c; i <= m; i++ ) {
readin(c);
adde(n+i,t,c);
}
maxflow();
return ;
}
dinic最小割建图
BZOJ 1391 [Ceoi2008]order的更多相关文章
- BZOJ 1391: [Ceoi2008]order [最小割]
1391: [Ceoi2008]order Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1509 Solved: 460[Submit][Statu ...
- Bzoj 1391: [Ceoi2008]order 网络流,最大权闭合图
1391: [Ceoi2008]order Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1105 Solved: 331[Submit][Statu ...
- bzoj 1391 [Ceoi2008]order(最小割)
[题意] 有n个有偿工作选做,m个机器,完成一个工作需要若干个工序,完成每个工序需要一个机器,对于一个机器,在不同的工序有不同的租费,但买下来的费用只有一个.问最大获益. [思路] 对于工作和机器建点 ...
- BZOJ 1391 [CEOI] Order - 网络流 最大流
Solution 非常简单的建边!!! 但是刚开始的代码不够体现社会主义的优越性, 于是我 .... 惨痛教训啊... 终于到了今天才能够体现社会主义优越性... Code #include<c ...
- 1391: [Ceoi2008]order
有N个工作,M种机器,每种机器你可以租或者买过来. 每个工作包括若干道工序,每道工序需要某种机器来完成,你可以通过购买或租用机器来完成. 现在给出这些参数,求最大利润 Input 第一行给出 N,M( ...
- P4177 [CEOI2008]order(网络流)最大权闭合子图
P4177 [CEOI2008]order 如果不能租机器,这就是最大权闭合子图的题: 给定每个点的$val$,并给出限制条件:如果取点$x$,那么必须取$y_1,y_2,y_3......$,满足$ ...
- [CEOI2008]order --- 最小割
[CEOI2008]order 题目描述: 有N个任务,M种机器,每种机器你可以租或者买过来. 每个工作包括若干道工序,每道工序需要某种机器来完成,你可以通过购买或租用机器来完成. 现在给出这些参数, ...
- [Luogu4177][CEOI2008]order
luogu sol 这题有点像网络流24题里面的太空飞行计划啊. 最大收益=总收益-最小损失. 先令\(ans=\sum\)任务收益. 源点向每个任务连容量为收益的边. 每个机器向汇点连容量为购买费用 ...
- bzoj 1391
建图跑最小割,加当前弧优化. #include<iostream> #include<cstdio> #include<cstring> #include<q ...
随机推荐
- 国密算法--Openssl 实现国密算法(基础介绍和产生秘钥对)
国密非对称加密算法 又称sm2,它是采取了ECC(曲线加密算法)中的一条固定的曲线,实际上就是ECC算法. 因为openssl里面不包含sm2算法,所以就要重新进行封装-. - 对于ECC算法我就不介 ...
- 第十次ScrumMeeting博客
第十次ScrumMeeting博客 本次会议于11月5日(日)22时整在新主楼G座2楼召开,持续20分钟. 与会人员:刘畅.辛德泰.窦鑫泽.张安澜.赵奕.方科栋. 特邀嘉宾:陈彦吉学长. 1. 每个人 ...
- TeamWork#3,Week5,Scrum Meeting 11.6, 11.7, 11.11, 11.12
11.6:到目前为止基本已完成相关知识的学习,各方面工作都开始进行,一开始进行比较慢. 11.7:项目遇到困难,需要补充相关知识,进度慢了下来. 11.11:各方面工作进展比较顺利,没有什么大问题. ...
- CS小分队第二阶段冲刺站立会议(6月2日)
昨日成果:攻克了按钮移动的问题: 遇到问题:一开始按钮移动时候,非常慢,因为是根绝相对位移差来移动,延时很严重,后来改用用鼠标的位置作为按钮的移动位置,效果明显. 按钮的mousedown事件和mou ...
- C# CHM帮助文档
1.生成chm文件 首先,下载EasyCHM软件,此软件可将HTML文件.TXT文件.图片和文件夹按照文件层次生成.chm文件.EasyCHM打开界面如图所示: 点击“新建”,选择需要生成.chm文件 ...
- java List.get
并不能 用如果List在i位置值不存在 并不能 List.get(i) !=null 判断 会抛异常 版权声明:本文为博主原创文章,未经博主允许不得转载.
- profibus总线和profibus dp的区别
profibus总线和profibus dp的区别:PROFBUS是一种国际性的开放式的现场总线标准,它既可以用于高速并且对于时间苛求的数据传输,也可以用于大范围的复杂通讯场合.PROFBUS-DP是 ...
- js 刷新当前页面会弹出提示框怎样将这个提示框去掉
//禁止刷新提示window.onbeforeunload = function() { var n = window.event.screenX - window.screenLeft; var b ...
- Spring 2.0
ProductBacklog:继续向下细化; 1.界面美化,统一界面风格,以简洁美观为主: 2.丰富版面的内容,吸引用户: 3.尝试增加新的版面: Sprint 计划会议:确定此次冲刺要完成的目标 1 ...
- 搭建企业级Docker Registry -- Harbor
Harbor 是一个企业级的 Docker Registry,可以实现 images 的私有存储和日志统计权限控制等功能,并支持创建多项目(Harbor 提出的概念),基于官方 Registry V2 ...