转自:简书https://www.jianshu.com/p/55458caf0814

SVM通常用对偶问题来求解,这样的好处有两个:1、变量只有N个(N为训练集中的样本个数),原始问题中的变量数量与样本点的特征个数相同,当样本特征非常多时,求解难度较大。2、可以方便地引入核函数,求解非线性SVM。求解对偶问题,常用的算法是SMO,彻底地理解这个算法对初学者有一定难度,本文尝试模拟算法作者发明该算法的思考过程,让大家轻轻松松理解SMO算法。文中的“我”拟指发明算法的大神。

001、初生牛犊不怕虎

最近,不少哥们儿向我反映,SVM对偶问题的求解算法太低效,训练集很大时,算法还没有蜗牛爬得快,很多世界著名的学者都在研究新的算法呢。听闻此言,我心头一喜:“兄弟我扬名立万的机会来了!”

我打开书,找出问题,看到是这个样子的:

 

这明显就是一个凸二次规划问题嘛,还不好解?等等,哥们说现有算法比较慢,所以我绝对不能按照常规思路去思考,要另辟蹊径。

蹊径啊蹊径,你在哪里呢?

我冥思苦想好几天,都没有什么好办法,哎!看来扬名立万的事儿要泡汤了。放下书,我决定去湖边(注:是瓦尔登湖不?)散散心,我已经在小黑屋关得太久了。

010、得来全不费工夫

正午时分,一丝风也没有,湖边零零散散的小情侣在呢喃私语,只有苦逼的我单身一个,我坐在湖边的一块大石上,平静的湖面映出我胡子拉碴憔悴的脸,我心里苦笑:“湖想必是可怜我,映出个对影陪我。”“对影???!!!”我心头一道亮光闪过,犹如干裂的土地听到第一声惊雷!我突然有了新的思路!

我疯狂地跑回屋里,身后是一对对受惊的小情侣怨恨的眼神。

我开始整理自己的思绪:

这个问题如果作为单纯的凸二次规划问题来看,很难有什么新的办法,毕竟凸二次规划已经被研究得透透了。但它的特殊之处在于:它是另一个问题的对偶问题,还满足KKT条件,怎么充分利用这个特殊性呢?

我随机找一个α=(α1,α2,...,αN)。假设它就是最优解,就可以用KKT条件来计算出原问题的最优解(w,b),就是这个样子:

 
 

进而可以得到分离超平面:

 

按照SVM的理论,如果这个g(x)是最优的分离超平面,就有:

 

姑且称这个叫g(x)目标条件吧。
根据已有的理论,上面的推导过程是可逆的。也就是说,只要我能找到一个α,它除了满足对偶问题的两个初始限制条件

 

由它求出的分离超平面g(x)还能满足g(x)目标条件,那么这个α就是对偶问题的最优解!!!

至此,我的思路已经确定了:首先,初始化一个α,让它满足对偶问题的两个初始限制条件,然后不断优化它,使得由它确定的分离超平面满足g(x)目标条件,在优化的过程中始终确保它满足初始限制条件,这样就可以找到最优解。

我不禁感到洋洋得意了,哥们我没有按照传统思路,想着怎么去让目标函数达到最小,而是想着怎么让α满足g(x)目标条件,牛X!我真他妈牛X!哈哈!!

011、中流击水停不住

具体怎么优化α呢?经过思考,我发现必须遵循如下两个基本原则:

  • 每次优化时,必须同时优化α的两个分量,因为只优化一个分量的话,新的α就不再满足初始限制条件中的等式条件了。

  • 每次优化的两个分量应当是违反g(x)目标条件比较多的。就是说,本来应当是大于等于1的,越是小于1违反g(x)目标条件就越多,这样一来,选择优化的两个分量时,就有了基本的标准。

好,我先选择第一个分量吧,α的分量中有等于0的,有等于C的,还有大于0小于C的,直觉告诉我,先从大于0小于C的分量中选择是明智的,如果没有找到可优化的分量时,再从其他两类分量中挑选。

现在,我选了一个分量,就叫它α1吧,这里的1表示它是我选择的第一个要优化的分量,可不是α的第1个分量。

为啥我不直接选两个分量呢?

我当时是这么想的,选择的两个分量除了要满足违反g(x)目标条件比较多外,还有一个重要的考量,就是经过一次优化后,两个分量要有尽可能多的改变,这样才能用尽可能少的迭代优化次数让它们达到g(x)目标条件,既然α1是按照违反g(x)目标条件比较多来挑选的,我希望选择α2时,能够按照优化后让α1、α2有尽可能多的改变来选。

你可能会想,说的怪好听的,倒要看你怎么选α2?

经过我一番潜心思考,我还真找到一个选α2的标准!!

我为每一个分量算出一个指标E,它是这样的:

 

我发现,当|E1-E2|越大时,优化后的α1、α2改变越大。所以,如果E1是正的,那么E2越负越好,如果E1是负的,那么E2越正越好。这样,我就能选到我的α2啦。

啥,你问这是为什么?

这个回头再说,现在要开始优化我的α1、α2啦。

100、 无限风光在险峰

怎么优化α1、α2可以确保优化后,它们对应的样本能够满足g(x)目标条件或者违反g(x)目标条件的程度变轻呢?我这人不贪心,只要优化后是在朝着好的方向发展就可以。

本以为峰回路转,谁知道峰回之后是他妈一座更陡峭的山峰!我心一横,你就是90度的山峰,哥们我也要登它一登!!

在沉思中,我的眼睛不经意地瞟见了对偶问题:

 

灵光一闪,计上心来!

虽然我不知道怎样优化α1、α2,让它们对应的样本违反g(x)目标条件变轻,但是我可以让它们优化后目标函数的值变小啊!使目标函数变小,肯定是朝着正确的方向优化!也就肯定是朝着使违反g(x)目标条件变轻的方向优化,二者是一致的啊!!

我真是太聪明了!

此时,将α1、α2看做变量,其他分量看做常数,对偶问题就是一个超级简单的二次函数优化问题:

 

其中:

 
 

至此,这个问题已经变得超级简单了!

举例来说明一下,假设y1和y2都等于1,那么第一个限制条件就变成了

 

首先,将α1=K-α2代入目标函数,这时目标函数变成了关于α2的一元函数,对α2求导并令导数为0可以求出α2_new。

然后,观察限制条件,第一个条件α1=K-α2相当于
0≦K-α2≦C
进而求得:
K-C≦α2≦K,再加上原有的限制
0≦α2≦C,可得
max(K-C,0)≦α2≦min(K,C)

如果α2_new就在这个限制范围内,OK!求出α1_new,完成一轮迭代。如果α2_new不在这个限制范围内,进行截断,得到新的α2_new_new,据此求得α1_new_new,此轮迭代照样结束!!

至此,我终于找到了一个新的求解SVM对偶问题的方法,在SVM这块土地上,种上了一棵自己的树!扬名立万也就是水到渠成啦!

SMO详解的更多相关文章

  1. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

  2. 【机器学习详解】SMO算法剖析(转载)

    [机器学习详解]SMO算法剖析 转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/51227754 CSDN−勿在浮沙筑高台 本文力 ...

  3. libsvm的安装,数据格式,常见错误,grid.py参数选择,c-SVC过程,libsvm参数解释,svm训练数据,libsvm的使用详解,SVM核函数的选择

    直接conda install libsvm安装的不完整,缺几个.py文件. 第一种安装方法: 下载:http://www.csie.ntu.edu.tw/~cjlin/cgi-bin/libsvm. ...

  4. Linq之旅:Linq入门详解(Linq to Objects)

    示例代码下载:Linq之旅:Linq入门详解(Linq to Objects) 本博文详细介绍 .NET 3.5 中引入的重要功能:Language Integrated Query(LINQ,语言集 ...

  5. 架构设计:远程调用服务架构设计及zookeeper技术详解(下篇)

    一.下篇开头的废话 终于开写下篇了,这也是我写远程调用框架的第三篇文章,前两篇都被博客园作为[编辑推荐]的文章,很兴奋哦,嘿嘿~~~~,本人是个很臭美的人,一定得要截图为证: 今天是2014年的第一天 ...

  6. EntityFramework Core 1.1 Add、Attach、Update、Remove方法如何高效使用详解

    前言 我比较喜欢安静,大概和我喜欢研究和琢磨技术原因相关吧,刚好到了元旦节,这几天可以好好学习下EF Core,同时在项目当中用到EF Core,借此机会给予比较深入的理解,这里我们只讲解和EF 6. ...

  7. Java 字符串格式化详解

    Java 字符串格式化详解 版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 文中如有纰漏,欢迎大家留言指出. 在 Java 的 String 类中,可以使用 format() 方法 ...

  8. Android Notification 详解(一)——基本操作

    Android Notification 详解(一)--基本操作 版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/Notification 文中如有纰 ...

  9. Android Notification 详解——基本操作

    Android Notification 详解 版权声明:本文为博主原创文章,未经博主允许不得转载. 前几天项目中有用到 Android 通知相关的内容,索性把 Android Notificatio ...

随机推荐

  1. Daily Scrum2 11.4

    昨天的任务大家都已经完成,daily scrum记录的是当日已经完成的任务. 今日任务列表: 杨伊:完成团队作业之软件测评的功能部分 徐钧鸿:CodingCook的model和helper部分 张艺: ...

  2. 计算器简单封装和ASP.net

    封装: using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ...

  3. beta冲刺(5/7)

    目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:恺琳 组员6:翟丹丹 组员7:何家伟 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4 ...

  4. Beta Scrum Day 7 — 听说

    7#听说

  5. HDU 1565 方格取数(1) 轮廓线dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others) ...

  6. DPDK skeleton basicfwd 源码阅读

    学习这个例子用于理解单纯的 dpdk 转发过程,L2 和 L3 的转发是基于此:在rte_eth_rx_burst()收包后进行解包,提取 mac.ip 等信息然后在转发到输出网卡. 如果要写出自己的 ...

  7. Intellij IDEA中file size exceeds configured limit解决

    把Hadoop源码导入IDEA中后,其中有个ClientNamenodeProtocolProtos文件代码高达82997行,IDEA直接就不把它当java类看了,报file size exceeds ...

  8. Beta阶段团队项目开发篇章3

    例会时间 2016.12.6晚 例会照片 个人工作 上阶段任务验收 中英文切换功能已经实现,调查结果分析已经完成,博客基本撰写完成,在征求其他组员意见后发布.任务基本完成. 任务分配 组员 任务内容 ...

  9. 从解决一个java.lang.NoSuchMethodError想到的

    今天在发布系统部署一个web app的时候,发现应用服务器(tomcat 7.0.26)不能正常启动,于是远程登陆到服务器上查看应用服务器的启动日志,在tomcat_home的logs/localho ...

  10. 多校联赛7 1001 hdu 4666(最远哈曼顿距离+优先队列)

    吐个糟,尼玛今天被虐成狗了,一题都没搞出来,这题搞了N久居然还是搞不出来,一直TLE,最后还是参考别人代码才领悟的,思路就这么简单, 就是不会转弯,看着模板却不会改,艹,真怀疑自己是不是个笨蛋题意:求 ...