Hadoop Streaming
原文地址:http://hadoop.apache.org/docs/r1.0.4/cn/streaming.html
- Hadoop Streaming
- Streaming工作原理
- 将文件打包到提交的作业中
- Streaming选项与用法
- 其他例子
- 常见问题
- 我该怎样使用Hadoop Streaming运行一组独立(相关)的任务呢?
- 如何处理多个文件,其中每个文件一个map?
- 应该使用多少个reducer?
- 如果在Shell脚本里设置一个别名,并放在-mapper之后,Streaming会正常运行吗? 例如,alias cl='cut -fl',-mapper "cl"会运行正常吗?
- 我可以使用UNIX pipes吗?例如 –mapper "cut –fl | set s/foo/bar/g"管用么?
- 在streaming作业中用-file选项运行一个分布式的超大可执行文件(例如,3.6G)时, 我得到了一个错误信息“No space left on device”。如何解决?
- 如何设置多个输入目录?
- 如何生成gzip格式的输出文件?
- Streaming中如何自定义input/output format?
- Streaming如何解析XML文档?
- 在streaming应用程序中如何更新计数器?
- 如何更新streaming应用程序的状态?
Hadoop Streaming
Hadoop streaming是Hadoop的一个工具, 它帮助用户创建和运行一类特殊的map/reduce作业, 这些特殊的map/reduce作业是由一些可执行文件或脚本文件充当mapper或者reducer。例如:
$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-streaming.jar \
-input myInputDirs \
-output myOutputDir \
-mapper /bin/cat \
-reducer /bin/wc
Streaming工作原理
在上面的例子里,mapper和reducer都是可执行文件,它们从标准输入读入数据(一行一行读), 并把计算结果发给标准输出。Streaming工具会创建一个Map/Reduce作业, 并把它发送给合适的集群,同时监视这个作业的整个执行过程。
如果一个可执行文件被用于mapper,则在mapper初始化时, 每一个mapper任务会把这个可执行文件作为一个单独的进程启动。 mapper任务运行时,它把输入切分成行并把每一行提供给可执行文件进程的标准输入。 同时,mapper收集可执行文件进程标准输出的内容,并把收到的每一行内容转化成key/value对,作为mapper的输出。 默认情况下,一行中第一个tab之前的部分作为key,之后的(不包括tab)作为value。 如果没有tab,整行作为key值,value值为null。不过,这可以定制,在下文中将会讨论如何自定义key和value的切分方式。
如果一个可执行文件被用于reducer,每个reducer任务会把这个可执行文件作为一个单独的进程启动。 Reducer任务运行时,它把输入切分成行并把每一行提供给可执行文件进程的标准输入。 同时,reducer收集可执行文件进程标准输出的内容,并把每一行内容转化成key/value对,作为reducer的输出。 默认情况下,一行中第一个tab之前的部分作为key,之后的(不包括tab)作为value。在下文中将会讨论如何自定义key和value的切分方式。
这是Map/Reduce框架和streaming mapper/reducer之间的基本通信协议。
用户也可以使用java类作为mapper或者reducer。上面的例子与这里的代码等价:
$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-streaming.jar \
-input myInputDirs \
-output myOutputDir \
-mapper org.apache.hadoop.mapred.lib.IdentityMapper \
-reducer /bin/wc
用户可以设定stream.non.zero.exit.is.failure true 或false 来表明streaming task的返回值非零时是 Failure 还是Success。默认情况,streaming task返回非零时表示失败。
将文件打包到提交的作业中
任何可执行文件都可以被指定为mapper/reducer。这些可执行文件不需要事先存放在集群上; 如果在集群上还没有,则需要用-file选项让framework把可执行文件作为作业的一部分,一起打包提交。例如:
$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-streaming.jar \
-input myInputDirs \
-output myOutputDir \
-mapper myPythonScript.py \
-reducer /bin/wc \
-file myPythonScript.py
上面的例子描述了一个用户把可执行python文件作为mapper。 其中的选项“-file myPythonScirpt.py”使可执行python文件作为作业提交的一部分被上传到集群的机器上。
除了可执行文件外,其他mapper或reducer需要用到的辅助文件(比如字典,配置文件等)也可以用这种方式打包上传。例如:
$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-streaming.jar \
-input myInputDirs \
-output myOutputDir \
-mapper myPythonScript.py \
-reducer /bin/wc \
-file myPythonScript.py \
-file myDictionary.txt
Streaming选项与用法
只使用Mapper的作业
有时只需要map函数处理输入数据。这时只需把mapred.reduce.tasks设置为零,Map/reduce框架就不会创建reducer任务,mapper任务的输出就是整个作业的最终输出。
为了做到向下兼容,Hadoop Streaming也支持“-reduce None”选项,它与“-jobconf mapred.reduce.tasks=0”等价。
为作业指定其他插件
和其他普通的Map/Reduce作业一样,用户可以为streaming作业指定其他插件:
-inputformat JavaClassName
-outputformat JavaClassName
-partitioner JavaClassName
-combiner JavaClassName
用于处理输入格式的类要能返回Text类型的key/value对。如果不指定输入格式,则默认会使用TextInputFormat。 因为TextInputFormat得到的key值是LongWritable类型的(其实key值并不是输入文件中的内容,而是value偏移量), 所以key会被丢弃,只把value用管道方式发给mapper。
用户提供的定义输出格式的类需要能够处理Text类型的key/value对。如果不指定输出格式,则默认会使用TextOutputFormat类。
Hadoop Streaming中的大文件和档案
任务使用-cacheFile和-cacheArchive选项在集群中分发文件和档案,选项的参数是用户已上传至HDFS的文件或档案的URI。这些文件和档案在不同的作业间缓存。用户可以通过fs.default.name.config配置参数的值得到文件所在的host和fs_port。
这个是使用-cacheFile选项的例子:
-cacheFile hdfs://host:fs_port/user/testfile.txt#testlink
在上面的例子里,url中#后面的部分是建立在任务当前工作目录下的符号链接的名字。这里的任务的当前工作目录下有一个“testlink”符号链接,它指向testfile.txt文件在本地的拷贝。如果有多个文件,选项可以写成:
-cacheFile hdfs://host:fs_port/user/testfile1.txt#testlink1 -cacheFile hdfs://host:fs_port/user/testfile2.txt#testlink2
-cacheArchive选项用于把jar文件拷贝到任务当前工作目录并自动把jar文件解压缩。例如:
-cacheArchive hdfs://host:fs_port/user/testfile.jar#testlink3
在上面的例子中,testlink3是当前工作目录下的符号链接,它指向testfile.jar解压后的目录。
下面是使用-cacheArchive选项的另一个例子。其中,input.txt文件有两行内容,分别是两个文件的名字:testlink/cache.txt和testlink/cache2.txt。“testlink”是指向档案目录(jar文件解压后的目录)的符号链接,这个目录下有“cache.txt”和“cache2.txt”两个文件。
$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-streaming.jar \
-input "/user/me/samples/cachefile/input.txt" \
-mapper "xargs cat" \
-reducer "cat" \
-output "/user/me/samples/cachefile/out" \
-cacheArchive 'hdfs://hadoop-nn1.example.com/user/me/samples/cachefile/cachedir.jar#testlink' \
-jobconf mapred.map.tasks=1 \
-jobconf mapred.reduce.tasks=1 \
-jobconf mapred.job.name="Experiment" $ ls test_jar/
cache.txt cache2.txt $ jar cvf cachedir.jar -C test_jar/ .
added manifest
adding: cache.txt(in = 30) (out= 29)(deflated 3%)
adding: cache2.txt(in = 37) (out= 35)(deflated 5%) $ hadoop dfs -put cachedir.jar samples/cachefile $ hadoop dfs -cat /user/me/samples/cachefile/input.txt
testlink/cache.txt
testlink/cache2.txt $ cat test_jar/cache.txt
This is just the cache string $ cat test_jar/cache2.txt
This is just the second cache string $ hadoop dfs -ls /user/me/samples/cachefile/out
Found 1 items
/user/me/samples/cachefile/out/part-00000 <r 3> 69 $ hadoop dfs -cat /user/me/samples/cachefile/out/part-00000
This is just the cache string
This is just the second cache string
为作业指定附加配置参数
用户可以使用“-jobconf <n>=<v>”增加一些配置变量。例如:
$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-streaming.jar \
-input myInputDirs \
-output myOutputDir \
-mapper org.apache.hadoop.mapred.lib.IdentityMapper\
-reducer /bin/wc \
-jobconf mapred.reduce.tasks=2
上面的例子中,-jobconf mapred.reduce.tasks=2表明用两个reducer完成作业。
关于jobconf参数的更多细节可以参考:hadoop-default.html
其他选项
Streaming 作业的其他选项如下表:
选项 | 可选/必须 | 描述 |
---|---|---|
-cluster name | 可选 | 在本地Hadoop集群与一个或多个远程集群间切换 |
-dfs host:port or local | 可选 | 覆盖作业的HDFS配置 |
-jt host:port or local | 可选 | 覆盖作业的JobTracker配置 |
-additionalconfspec specfile | 可选 | 用一个类似于hadoop-site.xml的XML文件保存所有配置,从而不需要用多个"-jobconf name=value"类型的选项单独为每个配置变量赋值 |
-cmdenv name=value | 可选 | 传递环境变量给streaming命令 |
-cacheFile fileNameURI | 可选 | 指定一个上传到HDFS的文件 |
-cacheArchive fileNameURI | 可选 | 指定一个上传到HDFS的jar文件,这个jar文件会被自动解压缩到当前工作目录下 |
-inputreader JavaClassName | 可选 | 为了向下兼容:指定一个record reader类(而不是input format类) |
-verbose | 可选 | 详细输出 |
使用-cluster <name>实现“本地”Hadoop和一个或多个远程Hadoop集群间切换。默认情况下,使用hadoop-default.xml和hadoop-site.xml;当使用-cluster <name>选项时,会使用$HADOOP_HOME/conf/hadoop-<name>.xml。
下面的选项改变temp目录:
-jobconf dfs.data.dir=/tmp
下面的选项指定其他本地temp目录:
-jobconf mapred.local.dir=/tmp/local
-jobconf mapred.system.dir=/tmp/system
-jobconf mapred.temp.dir=/tmp/temp
更多有关jobconf的细节请参考:http://wiki.apache.org/hadoop/JobConfFile
在streaming命令中设置环境变量:
-cmdenv EXAMPLE_DIR=/home/example/dictionaries/
其他例子
使用自定义的方法切分行来形成Key/Value对
之前已经提到,当Map/Reduce框架从mapper的标准输入读取一行时,它把这一行切分为key/value对。 在默认情况下,每行第一个tab符之前的部分作为key,之后的部分作为value(不包括tab符)。
但是,用户可以自定义,可以指定分隔符是其他字符而不是默认的tab符,或者指定在第n(n>=1)个分割符处分割而不是默认的第一个。例如:
$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-streaming.jar \
-input myInputDirs \
-output myOutputDir \
-mapper org.apache.hadoop.mapred.lib.IdentityMapper \
-reducer org.apache.hadoop.mapred.lib.IdentityReducer \
-jobconf stream.map.output.field.separator=. \
-jobconf stream.num.map.output.key.fields=4
在上面的例子,“-jobconf stream.map.output.field.separator=.”指定“.”作为map输出内容的分隔符,并且从在第四个“.”之前的部分作为key,之后的部分作为value(不包括这第四个“.”)。 如果一行中的“.”少于四个,则整行的内容作为key,value设为空的Text对象(就像这样创建了一个Text:new Text(""))。
同样,用户可以使用“-jobconf stream.reduce.output.field.separator=SEP”和“-jobconf stream.num.reduce.output.fields=NUM”来指定reduce输出的行中,第几个分隔符处分割key和value。
一个实用的Partitioner类 (二次排序,-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner 选项)
Hadoop有一个工具类org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner, 它在应用程序中很有用。Map/reduce框架用这个类切分map的输出, 切分是基于key值的前缀,而不是整个key。例如:
$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-streaming.jar \
-input myInputDirs \
-output myOutputDir \
-mapper org.apache.hadoop.mapred.lib.IdentityMapper \
-reducer org.apache.hadoop.mapred.lib.IdentityReducer \
-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner \
-jobconf stream.map.output.field.separator=. \
-jobconf stream.num.map.output.key.fields=4 \
-jobconf map.output.key.field.separator=. \
-jobconf num.key.fields.for.partition=2 \
-jobconf mapred.reduce.tasks=12
其中,-jobconf stream.map.output.field.separator=. 和-jobconf stream.num.map.output.key.fields=4是前文中的例子。Streaming用这两个变量来得到mapper的key/value对。
上面的Map/Reduce 作业中map输出的key一般是由“.”分割成的四块。但是因为使用了 -jobconf num.key.fields.for.partition=2 选项,所以Map/Reduce框架使用key的前两块来切分map的输出。其中, -jobconf map.output.key.field.separator=. 指定了这次切分使用的key的分隔符。这样可以保证在所有key/value对中, key值前两个块值相同的所有key被分到一组,分配给一个reducer。
这种高效的方法等价于指定前两块作为主键,后两块作为副键。 主键用于切分块,主键和副键的组合用于排序。一个简单的示例如下:
Map的输出(key)
11.12.1.2
11.14.2.3
11.11.4.1
11.12.1.1
11.14.2.2
切分给3个reducer(前两块的值用于切分)
11.11.4.1
-----------
11.12.1.2
11.12.1.1
-----------
11.14.2.3
11.14.2.2
在每个切分后的组内排序(四个块的值都用于排序)
11.11.4.1
-----------
11.12.1.1
11.12.1.2
-----------
11.14.2.2
11.14.2.3
Hadoop聚合功能包的使用(-reduce aggregate 选项)
Hadoop有一个工具包“Aggregate”( https://svn.apache.org/repos/asf/hadoop/core/trunk/src/java/org/apache/hadoop/mapred/lib/aggregate)。 “Aggregate”提供一个特殊的reducer类和一个特殊的combiner类, 并且有一系列的“聚合器”(“aggregator”)(例如“sum”,“max”,“min”等)用于聚合一组value的序列。 用户可以使用Aggregate定义一个mapper插件类, 这个类用于为mapper输入的每个key/value对产生“可聚合项”。 combiner/reducer利用适当的聚合器聚合这些可聚合项。
要使用Aggregate,只需指定“-reducer aggregate”:
$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-streaming.jar \
-input myInputDirs \
-output myOutputDir \
-mapper myAggregatorForKeyCount.py \
-reducer aggregate \
-file myAggregatorForKeyCount.py \
-jobconf mapred.reduce.tasks=12
python程序myAggregatorForKeyCount.py例子:
#!/usr/bin/python import sys; def generateLongCountToken(id):
return "LongValueSum:" + id + "\t" + "1" def main(argv):
line = sys.stdin.readline();
try:
while line:
line = line[:-1];
fields = line.split("\t");
print generateLongCountToken(fields[0]);
line = sys.stdin.readline();
except "end of file":
return None
if __name__ == "__main__":
main(sys.argv)
字段的选取(类似于unix中的 'cut' 命令)
Hadoop的工具类org.apache.hadoop.mapred.lib.FieldSelectionMapReduce帮助用户高效处理文本数据, 就像unix中的“cut”工具。工具类中的map函数把输入的key/value对看作字段的列表。 用户可以指定字段的分隔符(默认是tab), 可以选择字段列表中任意一段(由列表中一个或多个字段组成)作为map输出的key或者value。 同样,工具类中的reduce函数也把输入的key/value对看作字段的列表,用户可以选取任意一段作为reduce输出的key或value。例如:
$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-streaming.jar \
-input myInputDirs \
-output myOutputDir \
-mapper org.apache.hadoop.mapred.lib.FieldSelectionMapReduce\
-reducer org.apache.hadoop.mapred.lib.FieldSelectionMapReduce\
-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner \
-jobconf map.output.key.field.separa=. \
-jobconf num.key.fields.for.partition=2 \
-jobconf mapred.data.field.separator=. \
-jobconf map.output.key.value.fields.spec=6,5,1-3:0- \
-jobconf reduce.output.key.value.fields.spec=0-2:5- \
-jobconf mapred.reduce.tasks=12
选项“-jobconf map.output.key.value.fields.spec=6,5,1-3:0-”指定了如何为map的输出选取key和value。Key选取规则和value选取规则由“:”分割。 在这个例子中,map输出的key由字段6,5,1,2和3组成。输出的value由所有字段组成(“0-”指字段0以及之后所有字段)。
选项“-jobconf reduce.output.key.value.fields.spec=0-2:0-”(译者注:此处应为”0-2:5-“)指定如何为reduce的输出选取value。 本例中,reduce的输出的key将包含字段0,1,2(对应于原始的字段6,5,1)。 reduce输出的value将包含起自字段5的所有字段(对应于所有的原始字段)。
常见问题
我该怎样使用Hadoop Streaming运行一组独立(相关)的任务呢?
多数情况下,你不需要Map Reduce的全部功能, 而只需要运行同一程序的多个实例,或者使用不同数据,或者在相同数据上使用不同的参数。 你可以通过Hadoop Streaming来实现。
如何处理多个文件,其中每个文件一个map?
例如这样一个问题,在集群上压缩(zipping)一些文件,你可以使用以下几种方法:
- 使用Hadoop Streaming和用户编写的mapper脚本程序:
- 生成一个文件,文件中包含所有要压缩的文件在HDFS上的完整路径。每个map 任务获得一个路径名作为输入。
- 创建一个mapper脚本程序,实现如下功能:获得文件名,把该文件拷贝到本地,压缩该文件并把它发到期望的输出目录。
- 使用现有的Hadoop框架:
- 在main函数中添加如下命令:
FileOutputFormat.setCompressOutput(conf, true);
FileOutputFormat.setOutputCompressorClass(conf, org.apache.hadoop.io.compress.GzipCodec.class);
conf.setOutputFormat(NonSplitableTextInputFormat.class);
conf.setNumReduceTasks(0); - 编写map函数:
public void map(WritableComparable key, Writable value,
OutputCollector output,
Reporter reporter) throws IOException {
output.collect((Text)value, null);
} - 注意输出的文件名和原文件名不同
- 在main函数中添加如下命令:
应该使用多少个reducer?
请参考Hadoop Wiki:Reducer
如果在Shell脚本里设置一个别名,并放在-mapper之后,Streaming会正常运行吗? 例如,alias cl='cut -fl',-mapper "cl"会运行正常吗?
脚本里无法使用别名,但是允许变量替换,例如:
$ hadoop dfs -cat samples/student_marks
alice 50
bruce 70
charlie 80
dan 75 $ c2='cut -f2'; $HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-streaming.jar \
-input /user/me/samples/student_marks
-mapper \"$c2\" -reducer 'cat'
-output /user/me/samples/student_out
-jobconf mapred.job.name='Experiment' $ hadoop dfs -ls samples/student_out
Found 1 items/user/me/samples/student_out/part-00000 <r 3> 16 $ hadoop dfs -cat samples/student_out/part-00000
50
70
75
80
我可以使用UNIX pipes吗?例如 –mapper "cut –fl | set s/foo/bar/g"管用么?
现在不支持,而且会给出错误信息“java.io.IOException: Broken pipe”。这或许是一个bug,需要进一步研究。
在streaming作业中用-file选项运行一个分布式的超大可执行文件(例如,3.6G)时, 我得到了一个错误信息“No space left on device”。如何解决?
配置变量stream.tmpdir指定了一个目录,在这个目录下要进行打jar包的操作。stream.tmpdir的默认值是/tmp,你需要将这个值设置为一个有更大空间的目录:
-jobconf stream.tmpdir=/export/bigspace/...
如何设置多个输入目录?
可以使用多个-input选项设置多个输入目录:
hadoop jar hadoop-streaming.jar -input '/user/foo/dir1' -input '/user/foo/dir2'
如何生成gzip格式的输出文件?
除了纯文本格式的输出,你还可以生成gzip文件格式的输出,你只需设置streaming作业中的选项‘-jobconf mapred.output.compress=true -jobconf mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCode’。
Streaming中如何自定义input/output format?
至少在Hadoop 0.14版本以前,不支持多个jar文件。所以当指定自定义的类时,你要把他们和原有的streaming jar打包在一起,并用这个自定义的jar包替换默认的hadoop streaming jar包。
Streaming如何解析XML文档?
你可以使用StreamXmlRecordReader来解析XML文档。
hadoop jar hadoop-streaming.jar -inputreader "StreamXmlRecord,begin=BEGIN_STRING,end=END_STRING" ..... (rest of the command)
Map任务会把BEGIN_STRING和END_STRING之间的部分看作一条记录。
在streaming应用程序中如何更新计数器?
streaming进程能够使用stderr发出计数器信息。 reporter:counter:<group>,<counter>,<amount> 应该被发送到stderr来更新计数器。
如何更新streaming应用程序的状态?
streaming进程能够使用stderr发出状态信息。 reporter:status:<message> 要被发送到stderr来设置状态。
Hadoop Streaming的更多相关文章
- hadoop streaming 多路输出 [转载]
转载 http://www.cnblogs.com/shapherd/archive/2012/12/21/2827860.html hadoop 支持reduce多路输出的功能,一个reduce可以 ...
- Hadoop Streaming框架使用(一)
Streaming简介 link:http://www.cnblogs.com/luchen927/archive/2012/01/16/2323448.html Streaming框架允许任何程 ...
- Hadoop Streaming例子(python)
以前总是用java写一些MapReduce程序现举一个例子使用Python通过Hadoop Streaming来实现Mapreduce. 任务描述: HDFS上有两个目录/a和/b,里面数据均有3列, ...
- hadoop streaming 编程
概况 Hadoop Streaming 是一个工具, 代替编写Java的实现类,而利用可执行程序来完成map-reduce过程.一个最简单的程序 $HADOOP_HOME/bin/hadoop jar ...
- Hadoop Streaming 得到mapreduce_map_input_file中遇到的问题的版本号
1.Hadoop Streaming,您可以在任务获得hadoop设置环境变量, 例如,使用awk书面map从而能获得:filename = ENVIRON["mapreduce_map_i ...
- Hadoop Streaming框架学习2
Hadoop Streaming框架学习(二) 1.常用Streaming命令介绍 使用下面的命令运行Streaming MapReduce程序: 1: $HADOOP_HOME/bin/hadoop ...
- Hadoop Streaming框架学习(一)
Hadoop Streaming框架学习(一) Hadoop Streaming框架学习(一) 2013-08-19 12:32 by ATP_, 473 阅读, 3 评论, 收藏, 编辑 1.Had ...
- Hadoop Streaming Command Details and Q&A
Hadoop Streaming Hadoopstreaming is a utility that comes with the Hadoop distribution. The utilityal ...
- hadoop streaming编程小demo(python版)
大数据团队搞数据质量评测.自动化质检和监控平台是用django,MR也是通过python实现的.(后来发现有orc压缩问题,python不知道怎么解决,正在改成java版本) 这里展示一个python ...
- Hadoop Streaming详解
一: Hadoop Streaming详解 1.Streaming的作用 Hadoop Streaming框架,最大的好处是,让任何语言编写的map, reduce程序能够在hadoop集群上运行:m ...
随机推荐
- C语言:通过指针函数输出二维数组中每个学生的成绩
// // main.c // Pointer_function // // Created by ma c on 15/8/2. // Copyright (c) 2015年 bjsxt. ...
- 全局安装 Vue cli3 和 继续使用 Vue-cli2.x
官方链接:https://cli.vuejs.org/zh/guide/installation.html 1.安装Vue cli3 关于旧版本 Vue CLI 的包名称由 vue-cli 改成了 @ ...
- 记录cocos2d-html5与cocosd-x jsb中遇到的坑
这两天开始用coco2d-html5写游戏, 但最终是发布到手机上, 写的js代码是跑在jsb上的. 在此记录下遇到的坑. 注:cocos2d-x 简称 cx, cocos2d-html5 简称ch ...
- 国庆大礼包:2014年最全的ANDROID GUI模板和线框图免费下载
距离上次分享GUI模板有很长时间了,这段时间里设计趋势不断变化,谷歌推出了最新的Android L以及全新的界面设计,UI设计师又有得忙了,今天收集了一组实用的GUI模板和线框图,包含最新的Andro ...
- nginx rewrite only specific servername to https
需求: 把某个域名的80端口服务 ----> 重定向转到 这个域名的 443端口的服务. server { listen 80; server_name xxx.abcd.com.cn; ...
- 正则 js截取时间
项目中要把时间截取,只要年月日,不要时分秒,于是 /\d{4}-\d{1,2}-\d{1,2}/g.exec("2012-6-18 00:00:00") 或者另一种 var dat ...
- [HTML5] Avoiding CSS Conflicts via Shadow DOM CSS encapsulation
Shadow DOM is part of the web components specification. It allows us to ship self contained componen ...
- [Javascript] Hositing
First, memory is set aside for all necessary variables and declared functions. Function expression n ...
- jquery解析XML及获取XML节点名称
).tagName $().tagName [].tagName[] $(].tagName context.nodeName $(this).context.nodeName function ge ...
- Android实现固定头部信息,挤压动画(相似通讯录)
半年前,那时候我还是个大四的学生,每天都在找工作度过,想去北京体验一下蚁族生活,奋然离开了济南,哎...在济南我们学校还是数得着的好学校,去了北京就什么都不是了,一切的辛酸仅仅有自己知道,那时候的我仅 ...