opencv hog算子
梯度直方图特征(HOG) 是一种对图像局部重叠区域的密集型描述符, 它通过计算局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主。
HOG特征是一种局部区域描述符,它通过计算局部区域上的梯度方向直方图来构成人体特征,能够很好地描述人体的边缘。它对光照变化和小量的偏移不敏感。
图像中像素点(x,y)的梯度为
Dalal提出的Hog特征提取的过程:把样本图像分割为若干个像素的单元(cell),把梯度方向平均划分为9个区间(bin),在每个单元里面对所有像素的梯度方向在各个方向区间进行直方图统计,得到一个9维的特征向量,每相邻的4个单元构成一个块(block),把一个块内的特征向量联起来得到36维的特征向量,用块对样本图像进行扫描,扫描步长为一个单元。最后将所有块的特征串联起来,就得到了人体的特征。例如,对于64*128的图像而言,每2*2的单元(16*16的像素)构成一个块,每个块内有4*9=36个特征,以8个像素为步长,那么,水平方向将有7个扫描窗口,垂直方向将有15个扫描窗口。也就是说,64*128的图片,总共有36*7*15=3780个特征。
在行人检测过程中,除了上面提到的HOG特征提取过程,还包括彩图转灰度,亮度校正等步骤。总结一下,在行人检测中,HOG特征计算的步骤:
(1)将输入的彩图转换为灰度图;
(2)采用Gamma校正法对输入图像进行颜色空间的标准化(归一化); 目的是调节图像的对比度,降低图像局部的阴影和光照变化所造成的影响,同时可以抑制噪音的干扰;
(3)计算梯度;主要是为了捕获轮廓信息,同时进一步弱化光照的干扰。
(4)将梯度投影到单元的梯度方向;目的是为局部图像区域提供一个编码,
(5)将所有单元格在块上进行归一化;归一化能够更进一步对光照、阴影和边缘进行压缩,通常,每个单元格由多个不同的块共享,但它的归一化是基于不同块的,所以计算结果也不一样。因此,一个单元格的特征会以不同的结果多次出现在最后的向量中。我们将归一化之后的块描述符就称之为HOG描述符。
(6)收集得到检测空间所有块的HOG特征;该步骤就是将检测窗口中所有重叠的块进行HOG特征的收集,并将它们结合成最终的特征向量供分类使用。
opencv hog算子的更多相关文章
- Opencv拉普拉斯算子做图像增强
Opencv拉普拉斯算子——图像增强 #include <iostream> #include <opencv2/opencv.hpp> using namespace std ...
- HOG算子
原地址:http://blog.csdn.net/chlele0105/article/details/11991533 梯度直方图特征(HOG) 是一种对图像局部重叠区域的密集型描述符,它通过计算局 ...
- OpenCV——HOG特征检测
API: HOGDescriptor(Size _winSize, ---:窗口大小,即检测的范围大小,前面的64*128 Size _blockSize,--- 前面的2*2的cell,即cell的 ...
- Opencv Sift算子特征提取与匹配
SIFT算法的过程实质是在不同尺度空间上查找特征点(关键点),用128维方向向量的方式对特征点进行描述,最后通过对比描述向量实现目标匹配. 概括起来主要有三大步骤: 1.提取关键点: 2.对关键点附加 ...
- Opencv Surf算子特征提取与最优匹配
Opencv中Surf算子提取特征,生成特征描述子,匹配特征的流程跟Sift是完全一致的,这里主要介绍一下整个过程中需要使用到的主要的几个Opencv方法. 1. 特征提取 特征提取使用SurfFea ...
- 学习OpenCV——HOG+SVM
#include "cv.h" #include "highgui.h" #include "stdafx.h" #include < ...
- Opencv Laplace算子
//通过拉普拉斯-锐化边缘 kernel = (Mat_<float>(3,3)<<1,1,1,1,-8,1,1,1,1);//Laplace算子 filter2D(img2, ...
- Opencv Surf算子中keyPoints,描述子Mat矩阵,配对向量DMatch里都包含了哪些好玩的东东?
Surf算法是一把牛刀,我们可以很轻易的从网上或各种Opencv教程里找到Surf的用例,把例程中的代码或贴或敲过来,满心期待的按下F5,当屏幕终于被满屏花花绿绿的小圆点或者N多道连接线条霸占时,内心 ...
- opencv::Laplance算子
Laplance算子 理论:在二阶导数的时候,最大变化处的值为零即边缘是零值.通过二阶导数计算,依据此理论我们可以计算图像二阶导数,提取边缘. 拉普拉斯算子(Laplance operator) 处理 ...
随机推荐
- 金蝶K3,名称或代码在系统中已被使用,由于数据移动,未能继续以NOLOCK方式扫描
使用金蝶K3时出现:名称或代码在系统中已被使用:错误代码:3604(E14H)source:Microsoft OLE DB provider for SQL SERVERDetail:由于数据移动, ...
- 2018Java开发面经(持续更新)
不要给自己挖坑!!!不要给自己挖坑!!!不要给自己挖坑!!!如果面试官只是问你了解xxx吗,如果不是很了解,就直接说不知道,不要说知道,不然面试官深问再不知道就印象很不好! 处女面送给了头条(北京)日 ...
- Django中cookie和session
cookie Cookie的由来 大家都知道HTTP协议是无状态的. 无状态的意思是每次请求都是独立的,它的执行情况和结果与前面的请求和之后的请求都无直接关系,它不会受前面的请求响应情况直接影响,也不 ...
- 将ipa文件安装到测试设备上的几种方法
Installing Your App on Test Devices Using Xcode You can install iOS App files on devices using Xcode ...
- python中的多进程
具体参考这个博客地址:http://www.cnblogs.com/lxmhhy/p/6052167.html
- sql查询与修改数据库逻辑文件名,移动数据库存储路径
USE mydb GO --1.查询当前数据库的逻辑文件名 ) ) AS 'File Name 2'; --或通过以下语句查询: --SELECT name FROM sys.database_fil ...
- 20165333 实验二 Java面向对象程序设计
姓名:陈国超 学号:20165333 班级:1653 实验课程:JAVA程序设计 实验名称:Java面向对象程序设计 实验时间:2018.4.14 指导老师:娄家鹏 实验内容及步骤 (一) " ...
- 选择性卸载eclipse安装过的工具
我们有时候需要卸载eclipse中之前安装的一些工具,而不想全部删除,那就可以采取下面的方式: 打开eclipse,Help->About Eclipse->Installation De ...
- 在jenkins里使用SCM管理jenkinsfile
注意,这样作的前提是,插件里一定要安装pipeline和git. 设置就比较简单了. 在gitlat里生成一个演示的jenkinsfile pipeline { agent { node { labe ...
- 【转】AndroidStudio升到最新版本(3.1.2)之后
AndroidStudio升到最新版本(3.1.2)之后 暂时发现的需要大家注意的地方 1.androidstudio3无法导入moudle? 例如:我写了一个简单的项目,需要导入一个第三方的mo ...