https://www.lydsy.com/JudgeOnline/problem.php?id=5059

题意:将原序列{ai}改为一个递增序列{ai1}并且使得abs(ai-ai1)的和最小。

如果一个数列是递增的则不予考虑,如果是递减的,那么应该将这个递减序列每一个数都修改为这个序列的中位数(如果中位数是两数平均数则两数间任意一数都可以),手推一下可以知道这个性质的正确性。

因为后面的(中位)数小才会向前合并,所以新的中位数一定在前面或后面数列从小到大排序后的前半段(包含中位数)中(后面数列比中位数大的部分(不在堆中)一定比前面数列的中位数大),维护一个大根可并堆存从小到大排序后区间内的后半段数然后向前合并就能得到新的中位数。

嗯不错的题?

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
const int maxn=;
int n;
int ch[maxn][]={},siz[maxn]={},dis[maxn]={},val[maxn]={};
int l[maxn]={},r[maxn]={},b[maxn]={},tot=;;
int a[maxn]={};
inline void updata(int x){
siz[x]=siz[ch[x][]]+siz[ch[x][]]+;
}
int merge(int x,int y){
if(x==)return y;if(y==)return x;
if(val[x]<val[y])swap(x,y);
ch[x][]=merge(ch[x][],y);
if(dis[ch[x][]]>dis[ch[x][]])swap(ch[x][],ch[x][]);
dis[x]=dis[ch[x][]]+;
updata(x);
return x;
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);siz[i]=;val[i]=a[i];
l[++tot]=i;r[tot]=i;b[tot]=i;
while(tot>&&val[b[tot-]]>val[b[tot]]){
b[tot-]=merge(b[tot-],b[tot]);
r[tot-]=r[tot];
while(siz[b[tot-]]>(r[tot-]-l[tot-]+)/)
b[tot-]=merge(ch[b[tot-]][],ch[b[tot-]][]);
--tot;
}
}
long long ans=;
for(int i=;i<=tot;i++){
for(int j=l[i];j<=r[i];j++){
ans+=abs(val[b[i]]-a[j]);
}
}printf("%lld\n",ans);
return ;
}

BZOJ 5059: 前鬼后鬼的守护 可并堆 左偏树 数学的更多相关文章

  1. 【BZOJ 1367】 1367: [Baltic2004]sequence (可并堆-左偏树)

    1367: [Baltic2004]sequence Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sample Ou ...

  2. BZOJ 2333: [SCOI2011]棘手的操作 可并堆 左偏树 set

    https://www.lydsy.com/JudgeOnline/problem.php?id=2333 需要两个结构分别维护每个连通块的最大值和所有连通块最大值中的最大值,可以用两个可并堆实现,也 ...

  3. 【BZOJ 1455】 1455: 罗马游戏 (可并堆-左偏树+并查集)

    1455: 罗马游戏 Description 罗马皇帝很喜欢玩杀人游戏. 他的军队里面有n个人,每个人都是一个独立的团.最近举行了一次平面几何测试,每个人都得到了一个分数. 皇帝很喜欢平面几何,他对那 ...

  4. 【BZOJ 2333 】[SCOI2011]棘手的操作(离线+线段树|可并堆-左偏树)

    2333: [SCOI2011]棘手的操作 Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边 ...

  5. BZOJ 2809: [Apio2012]dispatching(可并堆 左偏树板题)

    这道题只要读懂题目一切好说. 给出nnn个点的一棵树,每一个点有一个费用vvv和一个领导力aaa,给出费用上限mmm.求下面这个式子的最大值ax∗∣S∣ ( S⊂x的子树, ∑iv[i]≤m )\la ...

  6. BZOJ5059 前鬼后鬼的守护 【堆扩展】*

    BZOJ5059 前鬼后鬼的守护 Description 八云紫的式神八云蓝有一张符卡名为[式神-前鬼后鬼的守护],这张符卡的弹幕为BOSS从两侧向自机发射大玉,大玉后面跟着一些小玉,形成一个&quo ...

  7. bzoj 4003: 城池攻占 左偏树

    题目大意 http://www.lydsy.com/JudgeOnline/problem.php?id=4003 题解 一开始看漏条件了 题目保证当占领城池可以使攻击力乘上\(v_i\)时,一定有\ ...

  8. BZOJ 5494: [2019省队联测]春节十二响 (左偏树 可并堆)

    题意 略 分析 稍微yy一下可以感觉就是一个不同子树合并堆,然后考场上写了一发左偏树,以为100分美滋滋.然而发现自己傻逼了,两个堆一一对应合并后剩下的一坨直接一次合并进去就行了.然鹅我这个sb把所有 ...

  9. BZOJ 5059 前鬼后鬼的守护

    题解: 解法一:用函数斜率什么的,不会,留坑 解法二: 某一个序列都变成一个值那么中位数最优 加入一个元素,与前面那一段区间的中位数比较 x>=mid什么事也不做 x<mid合并两端区间 ...

随机推荐

  1. java_环境安装(window10)

    参考地址 下载JDK 下载地址:https://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html 本地环境变 ...

  2. JavaScript验证注册信息

    <script language="javascript"> function check_login(form){ if(form.username.value==& ...

  3. 使用转义防御XSS

    使用转义防御XSS 在输出的时候防御XSS即对用户输入进行转义,XSS的问题本质上还是代码注入,HTML或者javascript的代码注入,即混淆了用户输入的数据和代码.而解决这个问题,就需要根据用户 ...

  4. 18 A GIF decoder: an exercise in Go interfaces 一个GIF解码器:go语言接口训练

    A GIF decoder: an exercise in Go interfaces  一个GIF解码器:go语言接口训练 25 May 2011 Introduction At the Googl ...

  5. 01 Getting Started 开始

    Getting Started 开始 Install the Go tools Test your installation Uninstalling Go Getting help   Downlo ...

  6. Java项目打war包的方法

    我们可以运用DOS命令来手工打war包: 首先,打开DOS命令行,敲入“jar”,我们发现它提示不是内部或外部的命令这样的错误,这时八成是你的JAVA环境没有配置好,我们可以用JAVA_HOME方式或 ...

  7. python网络编程--进程池

    一:进程池 进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程, 如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止. 进程池中有两个方法: apply a ...

  8. java基础38 正则表达式

    1.常用的正则表达式  预定义字符类:.  任何字符(与行结束符可能匹配也可能不匹配) \d  数字:[0-9] \D  非数字: [^0-9] \s  空白字符:[ \t\n\x0B\f\r] \S ...

  9. DedeCMS栏目页调用当前栏目名和上级栏目名

    在构建网页的时候,如果不想逐个写栏目列表页的标题,即列表页标题形式为:{field:seotitle/}_{dede:global.cfg_webname/},其中{field:seotitle/}为 ...

  10. C/C++之static

    C++的static有两种用法:面向过程程序设计中的static和面向对象程序设计中的static.前者应用于普通变量和函数,不涉及类:后者主要说明static在类中的作用. 1.面向过程设计中的st ...