【题目大意】

求关于 x 同余方程 ax ≡ 1 (mod b)的最小正整数解。

【思路】

求解ax+by=1,只要x<0就不断加上 b。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; void extgcd(int a,int b,int &x,int &y)
{
if (b==)
{
x=;y=;
return;
}
extgcd(b,a%b,x,y);
int tmp=x;
x=y;
y=tmp-(a/b)*y;
} int main()
{
int a,b;
scanf("%d%d",&a,&b);
int x,y;
extgcd(a,b,x,y);
while (x<=) x+=b;
printf("%d",x);
return ;
}

【扩展欧几里得】codevs1200-同余方程的更多相关文章

  1. poj 1061 扩展欧几里得解同余方程(求最小非负整数解)

    题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...

  2. 【数学】【NOIp2012】同余方程 题解 以及 关于扩展欧几里得与同余方程

    什么是GCD? GCD是最大公约数的简称(当然理解为我们伟大的党也未尝不可).在开头,我们先下几个定义: ①a|b表示a能整除b(a是b的约数) ②a mod b表示a-[a/b]b([a/b]在Pa ...

  3. 扩展欧几里得求解同余方程(poj 1061)

    设方程 ax + by = c , 若 gcd(a,b) 是 c的因子(记作gcd(a,b)|c)则方程有解,反之无解. 其中x0,y0是方程的一组特解 , d = gcd(a,b), poj1061 ...

  4. 【扩展欧几里得】NOIP2012同余方程

    题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...

  5. [P1082][NOIP2012] 同余方程 (扩展欧几里得/乘法逆元)

    最近想学数论 刚好今天(初赛上午)智推了一个数论题 我屁颠屁颠地去学了乘法逆元 然后水掉了P3811 和 P2613 (zcy吊打集训队!)(逃 然后才开始做这题. 乘法逆元 乘法逆元的思路大致就是a ...

  6. 【Luogu】P1516青蛙的约会(线性同余方程,扩展欧几里得)

    题目链接 定理:对于方程\(ax+by=c\),等价于\(a*x=c(mod b)\),有整数解的充分必要条件是c是gcd(a,b)的整数倍. ——信息学奥赛之数学一本通 避免侵权.哈哈. 两只青蛙跳 ...

  7. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)

    http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...

  8. POJ2115 - C Looooops(扩展欧几里得)

    题目大意 求同余方程Cx≡B-A(2^k)的最小正整数解 题解 可以转化为Cx-(2^k)y=B-A,然后用扩展欧几里得解出即可... 代码: #include <iostream> us ...

  9. 【数论】【扩展欧几里得】Codeforces 710D Two Arithmetic Progressions

    题目链接: http://codeforces.com/problemset/problem/710/D 题目大意: 两个等差数列a1x+b1和a2x+b2,求L到R区间内重叠的点有几个. 0 < ...

  10. POJ2115(扩展欧几里得)

    C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 23700   Accepted: 6550 Descr ...

随机推荐

  1. Spring4笔记5--基于注解的DI(依赖注入)

    基于注解的DI(依赖注入): 对于 DI 使用注解,将不再需要在 Spring 配置文件中声明 Bean 实例.只需要在 Spring 配置文件中配置组件扫描器,用于在指定的基本包中扫描注解. < ...

  2. Android音视频点/直播模块开发实践总结-zz

    随着音视频领域的火热,在很多领域(教育,游戏,娱乐,体育,跑步,餐饮,音乐等)尝试做音视频直播/点播功能.那么作为开发一个小白,如何快速学习音视频基础知识,了解音视频编解码的传输协议,编解码方式,以及 ...

  3. UFLDL 教程学习笔记(三)

    教程地址:http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/ logstic regression是二分类的问题,如果想要 ...

  4. thinkphp5高亮当前页(仅针对个人项目记录,不做通用参考)

    <div class="navbg"> <ul class="menu"> <li> <a href="/& ...

  5. Luogu P2310 【loidc,看看海】

    各位大佬都用的排序和杨颙大定理,蒟蒻的我怎么也不会做(瑟瑟发抖),那么,就来一发主席树吧.我们知道线段树可以维护区间,平衡树可以维护值域那么,我们可以用线段树套平衡树来解决这个区间值域的问题线段树套平 ...

  6. es6之yield

    yield 关键字用来暂停和继续一个生成器函数.我们可以在需要的时候控制函数的运行. yield 关键字使生成器函数暂停执行,并返回跟在它后面的表达式的当前值.与return类似,但是可以使用next ...

  7. xcode7 调用相册权限无提示

    1) 打开工程的Info.pilst: 2) 把 Bundle name 和 Bundle display name 的 value值 ,改成跟项目app名一致: 这样系统才能正确地接收到调用请求

  8. MySQL学习笔记:case when

    一.MySQL case when的三种用法: 1.case 字段 when, 字段的具体值: select a.*, case sex when '1' then '男' else '女' end ...

  9. 《精通Python设计模式》学习行为型之责任链模式

    感觉是全新的学习了. 因为在以前的工作中,并没有有意识的去运用哪一种编程模式. 以后要注意的了. 这才是高手之路呀~ class Event: def __init__(self, name): se ...

  10. pytest mark中的skip,skipif, xfail

    这些测试的过滤,或是对返回值的二重判断, 可以让测试过程更精准,测试结果更可控, 并可以更高层的应用测试脚本来保持批量化执行. import pytest import tasks from task ...